
Distributed computations
with GAP

Steve Linton
Centre of Interdisciplinary Research in Computational Algebra

University of St Andrews

International Workshop “Parallel Programming in GAP’
St Andrews, 18-24 August 2013

For example:

GAP and another GAP installation elsewhere

Several copies of GAP to work in parallel

GAP and another computer algebra system(s)

Running several (local or remote) independent copies
of computer algebra system(s) to solve problems.

What is “distributed” ?

Some software doesn’t work on Windows
Some requires large (and perhaps changing) databases
Some is still under development and you want to use the
latest version
Some you didn’t realise you need before you left home
Some may only be released as an online service

Mixing local and remote

Commonly used: ssh clients, web browser, copy-and-paste

Want to combine local and remote computations seamlessly

For problems requiring combinations of two or more
instances of different systems
Less work than adding capabilities to “home” system
Even if the “home” system can do it, the “foreign” system
may do it much faster!

Combining capabilities

Parallel computations

How to exploit multiple CPUs to solve larger problems

Do this with officially released software as available today

Interfaces do not work remotely
Transmission of large or complex objects may be difficult
To support new CAS, new I/O convertor is needed. It will
rely upon the I/O format, may be subject to parsing errors
and may be broken by changes in the other CAS
OpenMath support: not enough deep (i.e. range of CDs and
complete syntax/encodings) and wide (i.e. not many CAS)
Web services: not interactive, just database access
May not work in some operating systems
May be difficult for the end-user to customise

Common limitations

SCIEnce
Symbolic Computation Infrastructure for Europe

http://www.symbolic-computing.org

5+ years long research infrastructure project
Framework VI programme grant RII3-CT-2005-026133

• 9 partners
• 7 countries
• 2 continents

http://www.symbolic-computation.org

Middleware

SOAP http GET http html

CAS2

CAS1

CAS3

Direct linking
CAS to CAS Linking CAS to other systems

KANT MapleMuPAD

more
to

come
...GAP

Web-Apps, Java, C#,
other CAS, ...

SOAP-Clients

Scripts, other simple
apps, ...

GET-Clients

Administration

Humans

SymGrid

Grid-Clients

Remote procedure call protocol for communication between
CAS and any other compatible software (another CAS, web-
application, etc.)

SCSCP specification defines messages to and from CAS:
procedure call
returning result of successfully completed procedure
returning a signal about procedure termination

Both protocol instructions and data encoded in OpenMath

Implemented within systems rather than in wrappers

See http://www.symbolic-computing.org/scscp

http://www.symbolic-computation.org/scscp

A standard for representing mathematical objects with respect
to their semantics (see http://www.openmath.org)
Semantics vs presentation: what is <it>S</it>₄₂ ?

The Symmetric group of degree 42 ?
A sphere in 42-dimensional space ?
1+2+...+42 ?
The Answer to the Ultimate Question of Life, The
Universe and Everything ???

Instead, the following OpenMath code means what is says:
<OMOBJ>
 <OMA>
 <OMS cd="permgp2" name="symmetric_group"/>
 <OMI>42</OMI>
 </OMA>
</OMOBJ>

http://www.openmath.org

SCSCP messages
procedure_call, procedure_completed, procedure_terminated

RPC
identifier

call_id

Options
option_runtime,

option_debuglevel,
 option_min_memory,
option_max_memory,
 option_return_object,
option_return_cookie,
 option_return_nothing

Standard
errors

error_runtime,
error_memory,

error_system_specifi

Info
 info_runtime,
info_memory,
info_message

Special
procedures
 get_allowed_heads,
	 is_allowed_head,
	 get_transient_cd,
	 get_signature,

	 get_service_description

Special
symbols

signature,
service_description,

symbol_set, symbol_set_all,
	 no_such_transient_cd

Remote
objects
store_session,

store_persistent,
retrieve, unbind

SCSCP package by AK and Steve Linton

Included in the GAP distribution

Provides both client and server functionality

Uses GAP packages IO (requires compilation on
Linux and Mac OS X; Windows binaries are
provided with GAP distribution), GAPDoc and
OpenMath

Since GAP 4.5 release both client and server are
fully functional on Linux, Mac OS X and Windows

See http://www.cs.st-andrews.ac.uk/~alexk/scscp/

GAP implementation of SCSCP

http://www.cs.st-andrews.ac.uk/~alexk/scscp/

lines from the server configuration file

Simplest example

...
InstallSCSCPprocedure("WS_Factorial", Factorial);
...
RunSCSCPserver("localhost",26133);

The client needs to know the name of the remote procedure,
the name of the server and the number of the port

gap> EvaluateBySCSCP("WS_Factorial", [12], "localhost", 26133);
rec(attributes := [["call_id", "localhost:26133:12325:GxjuLOvp"]],
 object := 479001600)

The service provider installs procedures available as SCSCP
services and starts the SCSCP server
The client sends request to the server and gets back result
This is compatible with any SCSCP-compliant system !!!
The underlying technology is well-hidden: the end-user may
know nothing about OpenMath and SCSCP !!!
Store/Retrieve procedures allowing to work with remote
objects not supported in the native system; objects too large
to host them at home system; objects that can not be
transmitted or allow only partial transmission with some
knowledge that may be lost or too complicated to maintain

User-level functionality

1. Specify (e.g. in gap4r6/pkg/scscp/config.g) setup parameters

2. Put all what you need in the configuration file (you may use
as a template the file gap4r6/pkg/scscp/example/myserver.g):

loading all necessary packages and private GAP code
installing SCSCP procedures with
InstallSCSCPprocedure("NameForClient", InternalName);
starting the server with RunSCSCPserver(...)

May control where to listen, whom to answer, what to accept
in order to securely provide public SCSCP services
Start GAP with ‘gap myserver.g’ or as a daemon using the
gap4r6/pkg/scscp/gapd.sh script (output may be redirected to a
file or to /dev/null)

How to configure SCSCP server

The GAP Small Groups Library contains a database of all
groups of order up to 2000, except those of order 1024

For all orders in the database not divisible by 512, groups
can be “looked up” to find their number in this library

For groups of order 512, such lookup is possible with
the ANUPQ package

But ANUPQ does not work under Windows (and may
be difficult to compile on some Linux or Mac OS X
systems), so we may wish to make the identification of
groups of order 512 available as an SCSCP service and
call it from GAP sessions on Windows clients

Designing SCSCP services

3 approaches to group identification

fast and
complete GAP

installation

GAP
(slow machine

or no small
groups library)

CAS which
"understands"

matrices

Clients Servers

GAP in
Windows -
no ANUPQ
package

GAP in UNIX
environment -
ANUPQ works

complete GAP
installation

group id

group id

group id

group G

list of matrices generating G

group G of order 512

Install GAP standard function IdGroup as remotely available
procedure

Group -> group id

InstallSCSCPprocedure("WS_IdGroup", IdGroup);

The client’s call to this procedure will look like

gap> EvaluateBySCSCP("WS_IdGroup", [G], "far.far.away.net", 26133);

Create a function to construct and identify a group
generated by these matrices

List of matrices -> group id

IdGroupByGenerators:=function(gens)
return IdGroup(Group(gens));
end;
InstallSCSCPprocedure("GroupIdentificationService", IdGroupByGenerators);

The client’s call to this procedure may look like

gap> EvaluateBySCSCP("GroupIdentificationService", [[m1,m2,m3]],
 "far.far.away.net", 26133);

Note that errors will be handled automatically

pc-group of order 512 -> group id

How to encode pc-groups?

There is no CD for pc-groups (and only a private
CD for fp-groups)

Since we’re only expecting GAP clients, however, we
can use a GAP-specific representation – the integer
given by CodePcGroup

So our server will offer just one function
IdGroup512ByCode which will take this number,
reconstruct the group from it and return its ID

Server-side setup

pc-group of order 512 -> group id

gap> LoadPackage("scscp");; LoadPackage("anupq");;
gap> IdGroup512ByCode := function(code)
> local G, F, H;
> G := PcGroupCode(code, 512);
> F := PqStandardPresentation(G);
> H := PcGroupFpGroup(F);
> return IdStandardPresented512Group(H);
> end;;
gap> InstallSCSCPprocedure("IdGroup512", IdGroup512ByCode);
InstallSCSCPprocedure : procedure IdGroup512 installed.
gap> RunSCSCPserver(true, 26133);

Client-side wrapper

pc-group of order 512 -> group id

gap> IdGroup512:=function(G)
> local code, result;
> if Size(G) <> 512 then
> Error("|G|<>512\n");
> fi;
> code := CodePcGroup(G);
> result := EvaluateBySCSCP("IdGroup512ByCode", [code],
> "far.far.away.net", 26133);
> return result.object;
> end;;

Client-side usage: as user-friendly as standard call to IdGroup

gap> IdGroup512(DihedralGroup(512));
[512, 2042]

gap> IdGroup(DihedralGroup(256));
[256, 539]

Is this limited to functionality/data types for which CDs exist ?
Avoid this by allowing transient CDs, which contain
symbols specific to that service, obtainable from the
server on request

Encoding may be unreasonably bulky, or encoding costs may
be too high for some applications

Perfectly OK for services to pass data in some private
format encoded in a private CD or using OMSTRING,
OMBYTES or OMFOREIGN element, if that suits the
application.

Both transmission of actual mathematical objects and
references to them are supported
New CD may be designed for efficient representation if the
standard CD is not enough (e.g. matrices over finite fields)

Ways to run parallel computations in GAP

Traditional job submission systems (PBS, Condor)

In the current release of GAP also with the ParGAP
package using MPI (Message Passing Interface)

HPC-GAP alpha-release (http://www-circa.mcs.st-
and.ac.uk/hpcgap.php):

shared memory programming model using threads

distributed memory programming model using MPI

But what can you do only in GAP, avoiding external
binaries as much as possible?

For example, to create an “ad hoc” cluster from several
computers

http://www-circa.mcs.st-and.ac.uk/hpcgap.php

Parallel computing with SCSCP

Issuing multiple remote procedure calls

Waiting till all of them will be completed

Waiting for the first available result and discarding the rest

Implemented in GAP : easy to learn and modify

Master-Worker skeleton on top of this

Master-worker skeleton

Parallel computations with SCSCP

gap> ParListWithSCSCP(List([2..6],n->SymmetricGroup(n)),"WS_IdGroup");
#I master -> ["localhost", 26133] : SymmetricGroup([1 .. 2])
#I master -> ["localhost", 26134] : SymmetricGroup([1 .. 3])
#I ["localhost", 26133] --> master : [2, 1]
#I master -> ["localhost", 26133] : SymmetricGroup([1 .. 4])
#I ["localhost", 26134] --> master : [6, 1]
#I master -> ["localhost", 26134] : SymmetricGroup([1 .. 5])
#I ["localhost", 26133] --> master : [24, 12]
#I master -> ["localhost", 26133] : SymmetricGroup([1 .. 6])
#I ["localhost", 26133] --> master : [720, 763]
#I ["localhost", 26134] --> master : [120, 34]
[[2, 1], [6, 1], [24, 12], [120, 34], [720, 763]]

Parallel computations with SCSCP
Communication layer SCSCP

Environment
Linux, Mac OS X, Windows -
anything where SCSCP client/
server works

Supported workers any SCSCP-compliant CAS

Heterogeneity
No limits on operating system,
architecture, location

Fault-tolerance
Retrying on another worker
Adding new worker

Even more
More complex networks,
timeouts, shared structures ...

Profiling with EdenTV:
(master, 8 local workers and 2x8 remote workers)

Normalised unit group of a modular group algebra: the result is a group of order 3^242
Computed sequentially: 5 hr 8 min, in parallel: 19 m 31 sec. Speedup 15.92

GAP, KANT, MuPAD (currently inside MATLAB), Maple

Even more: Mathematica, Macaulay2 (out of box), TRIP (out
of box), Coq (prototype), Magma (wrapper), ...

Java OpenMath and SCSCP API: java.symcomp.org

A collection of tools and prototypes that were built around
this API (WUPSI, ISS, LattViz, SkySym, ...)

C/C++ API that originated from SCSCP support in TRIP

MiniSCSCP++ (a C++ library with a simple C++ client)

A simple SCSCP client written in Python

Implementations
as on today

SCSCP specification
Manuals for corresponding SCSCP-compliant CAS extensions
“Easy composition of symbolic computation software using SCSCP:
A new Lingua Franca for symbolic computation” by S.Linton,
K.Hammond, AK, C.Brown, P.W.Trinder, H.-W.Loidl, P.Horn and
D.Roozemond, J. Symbolic Computation 49 (2013), 95-119
“Parallel computations in modular group algebras” by AK and
S.Linton, Proceedings of PASCO 2010 (Grenoble, July 21-23,
2010): case study and tutorial on optimising the parallel
performance in our model
“The modular isomorphism problem for the groups of order 512”
by B.Eick and AK, Proceedings of Groups St Andrews in Bath
2009, Cambridge University Press

Further details

