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What is this talk about?

Given:
e a finite semigroup S; and

e a question about S.

Aim:
e to describe how to answer your question using a computer
e describe the state of the art.

Why?
e perform low-level calculations such as multiplication, inversion, ...
e suggests new theoretical results
e obtain counter-examples

e gain more detailed understanding

e perform more intricate calculations.
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Insert semigroup into computer ...number 1
Cayley tables

Reasons not to:

e Too many! 12 418 001 077 381 302 684 semigroups up to
isomorphism and anti-isomorphism with 10 elements

(Distler-Kelsey '13);
e Complexity! O(|S|?) just to verify associativity;

e Hard to input! A semigroup with 1000 elements has 1 million
entries in the Cayley table;

e Requires nearly complete knowledge!
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Insert semigroup into computer ...number 2

Presentations

Words in generators and relations:

(a,b|a® = a, aba = ba, b*a = ba, b*> = b, bab® = ba).

Reasons not to:

e Relatively difficult to find! given a semigroup S it can be difficult
to find a presentation for S

e Undecidability! almost every meaningful question is undecidable,
i.e. word problem, isomorphism problem, ...
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Insert semigroup into computer ...number 3
Generators

Specify generators of a particular type.

Definition

A transformation is a function f from {1,...,n} to itself written:
f= 1 2 ... n
~\1f 2f -+ nf)’

A transformation semigroup is just a semigroup consisting of a set of
transformations under composition of functions.

Theorem (Cayley’s theorem)

FEvery semigroup is isomorphic to a permutation transformation
SeEMLGroup.
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Fundamental tasks

Input: generators A (transformations, partial perms, matrices, binary
relations, partitions, ...) for a semigroup S.

Output:

the size of S

membership in S

factorise elements over the generators

the number of idempotents (22 = )

the maximal sub(semi)groups

the ideal structural of S (i.e. Green’s relations)

is S a group? an inverse semigroup? a regular semigroup?

the automorphism group of .S

the congruences of S...

. Mitchell (St Andrews) November 20th, 2015

7 /34



An algorithm

S acting on itself by right multiplication

Input: a set A of generators (transformations, partial perms, matrices,
binary relations, partitions, ...) for a semigroup S.

Output: the elements X of S.
Assumes: we can multiply and check equality.

Supposing the generators are distinct.

1. X:=A

2: for r € X do

3 for a € A do

4: if za € X then

5: append za to X
6: return X
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An example

Let S be the semigroup generated by the transformations

123 123
_(2 2 3) and b_<2 1 2)‘

The graph of the actions of a and b:

abQ 0

2%3
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The elements and the right Cayley graph
Edges of the form: z -5 zy Q

1 2 3
al2 2 3 / ‘
bl2 1 2 b
ab |1 1 2 x b @
ba |2 2 2 =«
l1 2 1 =
ab> |2 2 1 =«
bab |1 1 1 =«

% \Q

a’® = a, aba = ba, ba® = ba, b*>a = ba, b> = b, ab’a = ba, ab> = ab,
baba = ba, bab® = ba
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The left Cayley graph

Edges of the form z % yz ...

Q
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a,b
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bab

a’ = a, aba = ba, ba® = ba, b’a = ba, b* = b, ab’*a = ba, ab® = ab,
baba = ba, bab’ = ba

back forth
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X-classes (aQ
‘/
./
“/ \/ )

The Z-classes are the strongly connected components of the right
Cayley graph.
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Z-classes

The .Z-classes are the strongly connected components of the left
Cayley graph.
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The Green’s structure

\/

The Z-classes are the strongly connected components of the union of
the left and right Cayley graphs.

The partial order of the Z-classes is the transitive reflexive closure of
the quotient of the union of the left and right Cayley graphs by its

strongly connected components.
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Semigroupe

[@ V. Froidure and J.-E. Pin, Algorithms for computing finite
semigroups, in Foundations of Computational Mathematics, F.
Cucker et M. Shub (eds), Berlin, 1997, pp. 112-126, Springer.

[d J.-E. Pin, Algorithmic aspects of finite semigroup theory, a
tutorial, www .liafa.jussieu.fr/~jep/PDF /Exposes/St Andrews.pdf

[@ J-E. Pin, Semigroupe, C programme, available at
www.liafa.jussieu.fr/~jep/Logiciels/Semigroupe2.0/semigroupe2.html

[@ The Semigroups package for GAP version 3.0 (not yet released)
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GAP and Semigroupe
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Pros and Cons

Pros: only requires:
e equality tester
e multiplication

then we can run the algorithm!
Does not use the representation of the semigroup!

Cons:
e has complexity O(|S||A])
e it can be costly to multiply elements

e it can be costly to check if we've seen an element before

all the elements are stored, which uses lots of memory

Does not use the representation of the semigroup!
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The limitations of exhaustive

enumeration
n | # transformations memory | unit
1 1 16 bits
2 4 16 | bytes
3 27 162 | bytes
4 256 2 kb
5 3125 ~ 30 kb
6 46 656 ~ 546 kb
7 823 543 ~ 10 mb
8 16 777 216 ~ 256 mb
9 387 420 489 ~ 6 gb
10 10 000 000 000 ~ 186 gb
11 285 311 670 611 ~ 6 th
12 | 8 916 100 448 256 ~ 194 th
n n" | n"-n-16 bits

Storing the elements of a semigroup is impractical.
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Back to semigroups. ..

Suppose we want to compute the transformation semigroup S
generated by:

1 2 3 4 ﬂ

azea,b=ﬂ2$ﬂaac=(133 )

We want to use algorithms from computational group theory.

We do not want to find or store the elements of S.
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Schreier’'s Lemma for semigroups
Suppose that S = ( A) acts on the right on a set Q.

If ¥ C Q, then we denote by Sy, the group of permutations of X
induced by elements of the stabiliser of ¥ in S.

If s € S is such that ¥ - s = X, then s induces a permutation of X,
denote by s|x.

Proposition (Linton-Pfeiffer-Robertson-Ruskuc '98)
Let {¥4,...,%,} be a s.c.c. of the action of S on P(2). Then:

(1) for every i > 1, there exist u;,v; € S such that ¥y - u; = 3,
i v =21, (wvi)ly, =ids, and (viw)]s; = ids,
(ii) Sgl = < (uiavj)|gl 1<, n, ae A, Ya= E]‘ >
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Stabilisers
Let S be the semigroup generated by:

1

a=(23), b=(123)45), c=(1§

o | 1,2,3,4,5

(6% 1, 2, 3

a3 1, 3

ayg | 1,2

Qs 2, 3

(675 3

ag | 2 agb c
asg 1
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Stabilisers
Let S be the semigroup generated by:

a=(23), b=(123)(45), c=(

4 5
2 2

o | 1,2,3,4,5
az | 1,2,3

a3 1,3

Qg 3

S{1,2,3,4,5} =
S(1,2,3}) =
S1,3} =
S3y =
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Relating the action and the Z-classes

Proposition

Let S be a transformation semigroup, let x € S, and let R be the
Z-class of x in S. Then:

(i) {im(y) : y € R} is a s.c.c. of the action of S

(ii) {y € R : im(y) = im(z) } is a group isomorphic to the stabiliser
Sim(:r)

(iii) 4f im(y) belongs to the s.c.c. of im(z), then Sim(z) = Sim(y)-

An Z-class R can be represented by a triple consisting of
e the representative x

e the s.c.c. of im(z)

e the stabiliser Sjy,(,).
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The structure of an #-class

Proposition

Let S be a transformation semigroup, let x € S, and let R be the
X-class of © in S. Then:

(i) {im(y) : y € R} is a s.c.c. of the action of S

(ii) {y € R : im(y) = im(x) } is a group isomorphic to the stabiliser
Sim(ac)

(iii) 4f im(y) belongs to the s.c.c. of im(z), then Sim(z) = Sim(y)

The %-class R, of ¢ can be represented by the triple:

e the representative

s (123 45
“~\1 3333
e the s.c.c. {{1,3},{1,2},{2,3}} of im(c?)
e the stabiliser Sy, 2y = Sp133 = ((1 3))

J. D. Mitchell (St Andrews)

November 20th, 2015 24 / 34



The structure of an #-class

Proposition

(i) {im(y) : y € R} is a s.c.c. of the action of S
(ii)) {y € R : im(y) = im(x) } is a group isomorphic to the stabiliser
Sim(@)

(iii) 4f im(y) belongs to the s.c.c. of im(z), then Sim(z) = Sim(y)-

{1,3} {1,2} {2,3}

[
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Finding the Z-classes. ..

Input: a set A of transformations generating a semigroup S.

Output: the Z-classes of S.

1: find the action of S on {1,...,n} > the orbit algorithm
2: find the s.c.c.s of the action > standard graph algorithms
3 R:= {1} > Z-class reps
4: for x € R do

B for a € A do

6: if (az,y) & Z for any y € R then > see the next slide
T append az to R

8: return R.
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Validity
Suppose that S = (a,b). If s € S, then write

|s| = min. length of a word in a and b equal to s.
Then
ca=a-1€R
e b=>b-1cRif and only if (a,b) ¢ Z

Suppose R = {r; = a,ry,...,r;} contains representatives of

-classes of elements s € S with |s| < N for some N (and maybe

more elements).

e if s € S and |s| = N, then s = at or s = bt for some t € S with
[t| = N — 1.

o (t,r;) € Z for some i, and so (s,ar;) = (at,ar;) € Z (Z is a left

congruence)

The previous algorithm is valid!
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Testing membership in an Z-class - [

If x,y € S, then xZy implies that ker (z) = ker (y).

For example,

b2 (123 45\ (12345 _ (12
“\23154)\1 3333/ \33

since

345
1 3 3)¢R02

ker (c2) = {{1},{2,3,4,5}} # {{1,2,4,5},{3}} = ker (bc?).
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Testing membership in an Z-class - 11

Is
1 2345
= 27
(3 2 2 2 2)ERC
{1,3} {1,2} {2,3}
c? b c2b?
R,
Sqzy=1((13)) A(13) | A13)b | (1 3)b?
NN
b

Every element of R is of the form: c?gb’ where g € S{1,33-
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Testing membership in an Z-class - I11
(12345
732222

T € Re2 if and only if x = c*gb* for some g € Spizy=((13))
if and only if xb = c2g for some g € Spizy=((13))

{1,3} {1,2} {2,3}

2
¢ x
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Testing membership in an Z-class - [V

T € R if and only if xb = ¢2g for some g € Spizy=((13))

if and only if () lab=ge€ Sz =((13))
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a=(23), b= (123)(45), c:<1

—_
w N
w w
[\)

4 5\ @
B

1 a | 12345 | 1|2]3[4]5 *
T c| 123 | 12345
3 be | 123 12|3|45 =
T4 |13 1)2345
5 abe | 123 1312|145 =
6 cbe | 13 14523 =
r7 be? | 13 12453
rs | cabe | 13 | 12345 o« P
rg | (be)? | 13 12345

rio | abc® | 13 134512 =

ri1 | cabe | 3 12345

r9 | a(bc)? | 13 13]245

a-a=1d Za
b-a=(13)(45) Za
1 2 3 4 5
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Complexity

In the worst case the above algorithm has the same complexity as the
Froidure-Pin Algorithm O(|S| - |A|) where S = (A ). The worst case is
realised when S is _#-trivial.

In the best case the complexity is the same as that of the Schreier-Sims
Algorithm. The best case is realised when S happens to be a group
(but maybe doesn’t know it).

If S =1T,, i.e. S has lots of large subgroups and Z-classes, the
complexity is O(2") compared with O(n™) for the Froidure-Pin
Algorithm.
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More theory

It is possible to generalize the technique described above to arbitrary
subsemigroups of a regular semigroup.

Examples include:

e semigroups of matrices over finite fields
e subsemigroups of the partition monoid
e semigroups and inverse semigroups of partial permutations

e subsemigroups of regular Rees 0-matrix semigroups

The theory is described in:

[@ J. East, A. Egri-Nagy, J. D. Mitchell, and Y. Péresse, Computing
finite semigroups, http://arxiv.org/abs/1510.01868, 45 pages.
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