# Computing with finite semigroups: part I

#### J. D. Mitchell

School of Mathematics and Statistics, University of St Andrews

November 20th, 2015



### What is this talk about?

#### Given:

- a finite semigroup S; and
- a question about S.

#### Aim:

- to describe how to answer your question using a computer
- describe the state of the art.

### Why?

- $\bullet\,$  perform low-level calculations such as multiplication, inversion,  $\ldots$
- suggests new theoretical results
- obtain counter-examples
- gain more detailed understanding
- perform more intricate calculations.

Cayley tables



Cayley tables

#### Reasons not to:

- Too many! 12 418 001 077 381 302 684 semigroups up to isomorphism and anti-isomorphism with 10 elements (Distler-Kelsey '13);
- Complexity!  $O(|S|^3)$  just to verify associativity;
- Hard to input! A semigroup with 1000 elements has 1 million entries in the Cayley table;
- Requires nearly complete knowledge!

Presentations

Words in generators and relations:

$$\langle a, b | a^2 = a, aba = ba, b^2a = ba, b^3 = b, bab^2 = ba \rangle.$$

#### Reasons not to:

- Relatively difficult to find! given a semigroup S it can be difficult to find a presentation for S;
- Undecidability! almost every meaningful question is undecidable, i.e. word problem, isomorphism problem, ...

Generators

Specify generators of a particular type.

#### Definition

A transformation is a function f from  $\{1, ..., n\}$  to itself written:

$$f = \begin{pmatrix} 1 & 2 & \cdots & n \\ 1f & 2f & \cdots & nf \end{pmatrix}.$$

A transformation semigroup is just a semigroup consisting of a set of transformations under composition of functions.

### Theorem (Cayley's theorem)

 $\label{lem:energy} Every\ semigroup\ is\ isomorphic\ to\ a\ permutation\ transformation\ semigroup.$ 

#### Fundamental tasks

**Input:** generators A (transformations, partial perms, matrices, binary relations, partitions, ...) for a semigroup S.

### **Output:**

- the size of S
- membership in S
- factorise elements over the generators
- the number of idempotents  $(x^2 = x)$
- the maximal sub(semi)groups
- the ideal structural of S (i.e. Green's relations)
- is S a group? an inverse semigroup? a regular semigroup?
- the automorphism group of S
- the congruences of S...

## An algorithm

S acting on itself by right multiplication

Input: a set A of generators (transformations, partial perms, matrices, binary relations, partitions, ...) for a semigroup S.

Output: the elements X of S.

Assumes: we can multiply and check equality.

Supposing the generators are distinct.

```
1: X := A

2: for x \in X do

3: for a \in A do

4: if xa \notin X then

5: append xa to X

6: return X
```

## An example

Let S be the semigroup generated by the transformations

$$a = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 3 \end{pmatrix} \qquad \text{and} \qquad b = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \end{pmatrix}.$$

The graph of the actions of a and b:



orth

### The elements and the right Cayley graph

Edges of the form:  $x \xrightarrow{y} xy$ 

|                | 1 | 2 | 3 |   |
|----------------|---|---|---|---|
| $\overline{a}$ | 2 | 2 | 3 |   |
| b              | 2 | 1 | 2 |   |
| ab             | 1 | 1 | 2 | * |
| ba             | 2 | 2 | 2 | * |
| $b^2$          | 1 | 2 | 1 | * |
| $ab^2$         | 2 | 2 | 1 | * |
| bab            | 1 | 1 | 1 | * |



$$a^2 = a$$
,  $aba = ba$ ,  $ba^2 = ba$ ,  $b^2a = ba$ ,  $b^3 = b$ ,  $ab^2a = ba$ ,  $ab^3 = ab$ ,  $baba = ba$ ,  $bab^2 = ba$ 

back forth

 $\boldsymbol{a}$ 

### The left Cayley graph

Edges of the form  $x \xrightarrow{y} yx \dots$ 

|                | 1 | 2 | 3 |   |
|----------------|---|---|---|---|
| $\overline{a}$ | 2 | 2 | 3 |   |
| b              | 2 | 1 | 2 |   |
| ab             | 1 | 1 | 2 | * |
| ba             | 2 | 2 | 2 | * |
| $b^2$          | 1 | 2 | 1 | * |
| $ab^2$         | 2 | 2 | 1 | * |
| bab            | 1 | 1 | 1 | * |



$$a^2 = a$$
,  $aba = ba$ ,  $ba^2 = ba$ ,  $b^2a = ba$ ,  $b^3 = b$ ,  $ab^2a = ba$ ,  $ab^3 = ab$ ,  $baba = ba$ ,  $bab^2 = ba$ 

back forth

### $\mathcal{R}$ -classes



The  $\mathcal{R}$ -classes are the strongly connected components of the right Cayley graph.

### $\mathscr{L}$ -classes



The  $\mathcal{L}$ -classes are the strongly connected components of the left Cayley graph.

### The Green's structure



The  $\mathcal{D}$ -classes are the strongly connected components of the union of the left and right Cayley graphs.

The partial order of the  $\mathcal{D}$ -classes is the transitive reflexive closure of the quotient of the union of the left and right Cayley graphs by its strongly connected components.

## Semigroupe

- V. Froidure and J.-E. Pin, Algorithms for computing finite semigroups, in Foundations of Computational Mathematics, F. Cucker et M. Shub (eds), Berlin, 1997, pp. 112–126, Springer.
- J.-E. Pin, Algorithmic aspects of finite semigroup theory, a tutorial, www.liafa.jussieu.fr/~jep/PDF/Exposes/StAndrews.pdf
- J.-E. Pin, Semigroupe, C programme, available at www.liafa.jussieu.fr/~jep/Logiciels/Semigroupe2.0/semigroupe2.html
- The Semigroups package for GAP version 3.0 (not yet released)

# GAP and Semigroupe



#### Pros and Cons

Pros: only requires:

- equality tester
- multiplication

then we can run the algorithm!

Does not use the representation of the semigroup!

#### Cons:

- has complexity O(|S||A|)
- it can be costly to multiply elements
- it can be costly to check if we've seen an element before
- all the elements are stored, which uses lots of memory

Does not use the representation of the semigroup!

#### The limitations of exhaustive enumeration

| n  | # transformations    | memory                 | unit  |
|----|----------------------|------------------------|-------|
| 1  | 1                    | 16                     | bits  |
| 2  | 4                    | 16                     | bytes |
| 3  | 27                   | 162                    | bytes |
| 4  | 256                  | 2                      | kb    |
| 5  | 3 125                | $\sim 30$              | kb    |
| 6  | 46 656               | $\sim 546$             | kb    |
| 7  | 823 543              | $\sim 10$              | mb    |
| 8  | $16\ 777\ 216$       | $\sim 256$             | mb    |
| 9  | $387\ 420\ 489$      | $\sim 6$               | gb    |
| 10 | 10 000 000 000       | $\sim 186$             | gb    |
| 11 | $285\ 311\ 670\ 611$ | $\sim 6$               | tb    |
| 12 | 8 916 100 448 256    | $\sim 194$             | tb    |
| :  | :                    |                        |       |
| n  | $n^n$                | $n^n \cdot n \cdot 16$ | bits  |

Storing the elements of a semigroup is impractical.

### Back to semigroups...

Suppose we want to compute the transformation semigroup S generated by:

$$a = (2\ 3), \quad b = (1\ 2\ 3)(4\ 5), \quad c = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 3 & 2 & 2 \end{pmatrix}.$$

We want to use algorithms from computational group theory.

We do not want to find or store the elements of S.

# Schreier's Lemma for semigroups

Suppose that  $S = \langle A \rangle$  acts on the right on a set  $\Omega$ .

If  $\Sigma \subseteq \Omega$ , then we denote by  $S_{\Sigma}$  the group of permutations of  $\Sigma$  induced by elements of the stabiliser of  $\Sigma$  in S.

If  $s \in S$  is such that  $\Sigma \cdot s = \Sigma$ , then s induces a permutation of  $\Sigma$ , denote by  $s|_{\Sigma}$ .

### Proposition (Linton-Pfeiffer-Robertson-Ruškuc '98)

Let  $\{\Sigma_1, \ldots, \Sigma_n\}$  be a s.c.c. of the action of S on  $\mathcal{P}(\Omega)$ . Then:

- (i) for every i > 1, there exist  $u_i, v_i \in S$  such that  $\Sigma_1 \cdot u_i = \Sigma_i$ ,  $\Sigma_i \cdot v_i = \Sigma_1$ ,  $(u_i v_i)|_{\Sigma_1} = \mathrm{id}_{\Sigma_1}$  and  $(v_i u_i)|_{\Sigma_i} = \mathrm{id}_{\Sigma_i}$
- (ii)  $S_{\Sigma_1} = \langle (u_i a v_j)|_{\Sigma_1} : 1 \le i, j \le n, \ a \in A, \ \Sigma_i \cdot a = \Sigma_j \rangle$ .

forth

### Stabilisers

Let S be the semigroup generated by:

$$a = (2\ 3), \quad b = (1\ 2\ 3)(4\ 5), \quad c = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 3 & 2 & 2 \end{pmatrix}.$$

$$\begin{array}{c|cccc} \alpha_1 & 1, 2, 3, 4, 5 \\ \alpha_2 & 1, 2, 3 \\ \alpha_3 & 1, 3 \\ \alpha_4 & 1, 2 \\ \alpha_5 & 2, 3 \\ \alpha_6 & 3 \\ \alpha_7 & 2 \\ \alpha_8 & 1 \end{array}$$



### Stabilisers

 $\alpha_6$ 

 $S_{\{3\}}$ 

Let S be the semigroup generated by:

$$a = (2 \ 3), \quad b = (1 \ 2 \ 3)(4 \ 5), \quad c = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 3 & 2 & 2 \end{pmatrix}.$$

$$\begin{array}{c|cccc} \alpha_1 & 1, 2, 3, 4, 5 & & & & & & & & \\ \alpha_2 & 1, 2, 3 & & & & & & \\ \alpha_3 & 1, 3 & & & & & & \\ \alpha_6 & 3 & & & & & & \\ S_{\{1,2,3,4,5\}} & = & \langle (2 \ 3), (1 \ 2 \ 3)(4 \ 5) \rangle & & & & & & \\ S_{\{1,2,3\}} & = & \langle (2 \ 3), (1 \ 2 \ 3) \rangle & & & & \\ S_{\{1,3\}} & = & \langle (1 \ 3) \rangle & & & & \\ S_{\{3\}} & = & \langle \operatorname{id} \rangle & & & & \\ \end{array}$$

# Relating the action and the $\mathscr{R}$ -classes

### Proposition

Let S be a transformation semigroup, let  $x \in S$ , and let R be the  $\mathscr{R}$ -class of x in S. Then:

- (i)  $\{ \operatorname{im}(y) : y \in R \}$  is a s.c.c. of the action of S
- (ii) {  $y \in R : \operatorname{im}(y) = \operatorname{im}(x)$  } is a group isomorphic to the stabiliser  $S_{\operatorname{im}(x)}$
- (iii) if  $\operatorname{im}(y)$  belongs to the s.c.c. of  $\operatorname{im}(x)$ , then  $S_{\operatorname{im}(x)} \cong S_{\operatorname{im}(y)}$ .

An  $\mathcal{R}$ -class R can be represented by a triple consisting of

- the representative x
- the s.c.c. of im(x)
- the stabiliser  $S_{im(x)}$ .

forth

### The structure of an $\mathscr{R}$ -class

#### Proposition

Let S be a transformation semigroup, let  $x \in S$ , and let R be the  $\mathscr{R}\text{-class of }x$  in S. Then:

- (i)  $\{ im(y) : y \in R \}$  is a s.c.c. of the action of S
- (ii) {  $y \in R : \operatorname{im}(y) = \operatorname{im}(x)$  } is a group isomorphic to the stabiliser  $S_{\operatorname{im}(x)}$
- (iii) if  $\operatorname{im}(y)$  belongs to the s.c.c. of  $\operatorname{im}(x)$ , then  $S_{\operatorname{im}(x)} \cong S_{\operatorname{im}(y)}$ .

The  $\mathcal{R}$ -class  $R_{c^2}$  of  $c^2$  can be represented by the triple:

- the representative  $c^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 3 & 3 & 3 \end{pmatrix}$
- the s.c.c.  $\{\{1,3\},\{1,2\},\{2,3\}\}\$  of  $\operatorname{im}(c^2)$
- the stabiliser  $S_{\text{im}(c^2)} = S_{\{1,3\}} = \langle (1 \ 3) \rangle$

### The structure of an $\mathscr{R}$ -class

### Proposition

- (i)  $\{ im(y) : y \in R \}$  is a s.c.c. of the action of S
- (ii) {  $y \in R : \operatorname{im}(y) = \operatorname{im}(x)$  } is a group isomorphic to the stabiliser  $S_{\operatorname{im}(x)}$
- (iii) if  $\operatorname{im}(y)$  belongs to the s.c.c. of  $\operatorname{im}(x)$ , then  $S_{\operatorname{im}(x)} \cong S_{\operatorname{im}(y)}$ .

|           | $\{1, 3\}$       | $\{1,2\}$     | $\{2, 3\}$    |
|-----------|------------------|---------------|---------------|
| $R_{c^2}$ | c <sup>2</sup> • | <i>y</i><br>• | <i>y</i><br>• |

## Finding the $\mathscr{R}$ -classes...

Input: a set A of transformations generating a semigroup S.

Output: the  $\mathscr{R}$ -classes of S.

```
1: find the action of S on \{1,\ldots,n\}
                                                             ▶ the orbit algorithm
2: find the s.c.c.s of the action
                                                   > standard graph algorithms
3: \Re := \{1\}
                                                                     \triangleright \mathcal{R}-class reps
4: for x \in \Re do
       for a \in A do
5:
           if (ax, y) \notin \mathcal{R} for any y \in \Re then
                                                               > see the next slide
6:
                append ax to \Re
7:
               return R.
8:
```

### Validity

Suppose that  $S = \langle a, b \rangle$ . If  $s \in S$ , then write

 $|s| = \min$  length of a word in a and b equal to s.

#### Then

- $a = a \cdot 1 \in \mathfrak{R}$
- $b = b \cdot 1 \in \Re$  if and only if  $(a, b) \notin \mathscr{R}$
- ...
- Suppose  $\mathfrak{R} = \{r_1 = a, r_2, \dots, r_k\}$  contains representatives of  $\mathscr{R}$ -classes of elements  $s \in S$  with |s| < N for some N (and maybe more elements).
- if  $s \in S$  and |s| = N, then s = at or s = bt for some  $t \in S$  with |t| = N 1.
- $(t, r_i) \in \mathcal{R}$  for some i, and so  $(s, ar_i) = (at, ar_i) \in \mathcal{R}$  ( $\mathcal{R}$  is a left congruence)

#### The previous algorithm is valid!

# Testing membership in an $\mathscr{R}$ -class - I

If  $x, y \in S$ , then  $x \mathcal{R} y$  implies that  $\ker(x) = \ker(y)$ .

For example,

$$bc^{2} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 3 & 3 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 3 & 1 & 3 & 3 \end{pmatrix} \not\in R_{c^{2}}$$

since

$$\ker(c^2) = \{\{1\}, \{2, 3, 4, 5\}\} \neq \{\{1, 2, 4, 5\}, \{3\}\} = \ker(bc^2).$$

forth

# Testing membership in an $\mathscr{R}$ -class - II

Is

Every element of  $R_{c^2}$  is of the form:  $c^2gb^i$  where  $g \in S_{\{1,3\}}$ .

ack forth

# Testing membership in an $\mathscr{R}$ -class - III

$$x = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 2 & 2 & 2 \end{pmatrix}$$

$$x \in R_{c^2}$$
 if and only if  $x = c^2 g b^2$  for some  $g \in S_{\{1,3\}} = \langle (1\ 3) \rangle$  if and only if  $xb = c^2 g$  for some  $g \in S_{\{1,3\}} = \langle (1\ 3) \rangle$ 



## Testing membership in an $\mathscr{R}$ -class - IV

J. D. Mitchell (St Andrews)

November 20th, 2015

## Complexity

In the worst case the above algorithm has the same complexity as the Froidure-Pin Algorithm  $O(|S|\cdot |A|)$  where  $S=\langle\ A\ \rangle$ . The worst case is realised when S is  $\mathscr{J}$ -trivial.

In the best case the complexity is the same as that of the Schreier-Sims Algorithm. The best case is realised when S happens to be a group (but maybe doesn't know it).

If  $S = T_n$ , i.e. S has lots of large subgroups and  $\mathcal{R}$ -classes, the complexity is  $O(2^n)$  compared with  $O(n^n)$  for the Froidure-Pin Algorithm.

## More theory

It is possible to generalize the technique described above to arbitrary subsemigroups of a regular semigroup.

#### Examples include:

- semigroups of matrices over finite fields
- subsemigroups of the partition monoid
- semigroups and inverse semigroups of partial permutations
- subsemigroups of regular Rees 0-matrix semigroups
- . . . .

#### The theory is described in:



J. East, A. Egri-Nagy, J. D. Mitchell, and Y. Péresse, Computing finite semigroups, http://arxiv.org/abs/1510.01868, 45 pages.