Computing with finite semigroups: part II

J. D. Mitchell

School of Mathematics and Statistics, University of St Andrews

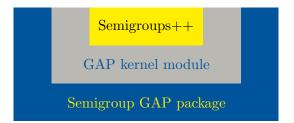
November 20th, 2015

The Semigroups package (version 2.6) - overview

- methods for semigroups, in particular semigroups of transformation, partial permutations, partitions, matrices over finite fields and Rees 0-matrix semigroups
- is (often) faster and (always) more versatile than other software for computing with semigroups
- can calculate Green's classes, size, elements, group of units, minimal ideal, and test membership, find inverses of a regular elements
- factorizing elements over the generators
- testing if a semigroup satisfies a particular property, such as if it is regular, simple, inverse, completely regular
- functions to read/write large collections of element from/to a file
- change representations of semigroups
- compute small generating sets, the maximal subsemigroups of a semigroup, the character table of a inverse semigroup, a smaller degree partial perm representation of an inverse semigroup, the normalizer of a semigroup in a permutation group, produce pictures of the Green's structure of a semigroup, the free inverse semigroup, graph inverse semigroups, free bands, congruences,

. . .

The Semigroups package (version 3.0) - overview



- Semigroups++: a standalone C/C++ library containing (so far!) an implementation of the Froidure-Pin Algorithm (including a multithreaded version)
- GAP kernel module: C kernel module for the Semigroups package interface with Semigroups++.
- Semigroups: the GAP package with all of the features from the previous slide for all semigroups in GAP.

The Semigroups package (version 3.0) - overview

- New types: semigroups of matrices over semirings:
 - $\circ\,$ the integers: \mathbbm{Z}
 - $\circ\;$ the Boolean semiring: the set $\{0,1\}$ with:

+	0	1		×	0	1
0			-	0	0	0
1	1	1		1	0	1

- $\circ~$ the max-plus semiring: $\mathbb{Z}\cup\{-\infty\}$ with operations max and +.
- $\circ~$ the min-plus semiring: $\mathbb{Z}\cup\{\infty\}$ with operations min and +.
- $\circ~$ the tropical max-plus semirings: $\{-\infty,0,1,\ldots,t\}$ with operations max and + (truncated at t)
- the tropical min-plus semirings: $\{0, 1, ..., t, ∞\}$ with operations min and + (truncated at t)
- $\mathbb{N}_{t,p} = \{0, 1, \dots, t, t+1, \dots, t+p-1\}$ for some t and p under + and × mod t = t+p
- Partitioned binary relations (PBRs) as defined by Martin and Mazorchuk, 2011.

The Semigroups package for GAP - contributors

Semigroups has around 20 contributors:

- Manuel Delgado [Visualisation]
- James East [Partition semigroups]
- Attila Egri-Nagy [Partition semigroups, bug hunter]
- Julius Jonušas [Free inverse semigroups, free bands, ideals]
- Markus Pfeiffer [Partition and matrix semigroups]
- Ben Steinberg [Character tables for inverse semigroups]
- Michael Torpey [Congruences]
- Wilf Wilson [Small degree representations, maximal subsemigroups]

It is open-source and developed on bitbucket:

http://bitbucket.org/james-d-mitchell/semigroups

http://tinyurl.com/semigroups

Application 1: Endomorphisms of graphs, 1/1

A transformation f is **non-uniform** if there exist i, j such that $|(i)f^{-1}| \neq |(j)f^{-1}|$.

Conjecture (Araújo, Bentz, Cameron, Royle, Schaefer)

If G is a primitive group and f is any non-uniform transformation, then $\langle G, f \rangle$ contains a constant transformation.

The conjecture is false.

Application 2: Semigroups from digraphs, 1/4Take a digraph D:

For every edge $i \longrightarrow j$ get one transformation mapping i to j and fixing everything else:

$$D = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 2 & 3 & 4 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 3 & 4 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 4 \end{pmatrix} \right\}.$$

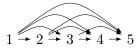
Define $S = \langle D \rangle$. We say that S is **arc-generated**.

What (if any) is the relationship between properties of the digraph D and the semigroup S?

Application 2: Examples, 2/4

Theorem (Howie '78, Solomon '96)

- $T_n \setminus S_n$ is arc-generated by D if and only if D contains a strongly connected tournament;
- the semigroup of order-preserving transformations $O_n := \{f \in T_n \setminus S_n : u \leq v \text{ if } (u)f \leq (v)f\}$ is arc-generated by an undirected path of length n
- the Catalan semigroup $C_n := \{f \in T_n \setminus S_n : v \le (v)f, u \le v \text{ if } (u)f \le (v)f\}$ is arc-generated by a directed path of length n
- the semigroup of non-decreasing transformations $OI_n := \{f \in T_n \setminus S_n : v \leq (v)f\}$ is arc-generated by the transitive tournament shown below.



Application 2: The program, 3/4

Lemma

If D is a digraph with connected components D_1, D_2, \ldots, D_n , then $\langle D \rangle \cong \langle D_1 \rangle \times \langle D_2 \rangle \times \cdots \times \langle D_n \rangle.$

For $n \in \mathbb{N}$ and a property P of semigroups:

- get the set \mathcal{D}_n of digraphs with n vertices up to isomorphism
- create all arc-generated semigroups \mathcal{S}_n
- find all the semigroups in \mathcal{S}_n with property P
- look at all the digraphs which generate the semigroups in S_n .

Application 2: Some results 4/4 Joint work with P. J. Cameron, A. Castillo-Ramirez, and M. Gadouleau

Theorem

Let D be a connected digraph. Then the following are equivalent:

- (i) $\langle D \rangle$ is inverse;
- (ii) ⟨D⟩ is isomorphic to the semilattice of idempotents of the symmetric inverse monoid on a set of size n − 1 (without the identity);
- (iii) $\langle D \rangle$ is commutative;
- (iv) D is a fan.

In particular, note that $|\langle D \rangle| = 2^{n-1} - 1$.

Theorem

Let D be a digraph. Then D is acyclic if and only if $\langle D \rangle$ is \mathscr{R} -trivial.

J. D. Mitchell (St Andrews)

Application 3: Hall matrices, 1/6

The Marriage Problem

Given two groups A and B of people:

- for every person a in A there is a subset $B_a \subseteq B$ such that a would be happy to marry anyone in B_a ; and
- every person in B is happy to marry anyone who wants to marry them.
- Is it possible to marry everyone so that everyone is happy?

Theorem (Hall '35)

Everyone is happy if and only if for any subset W of $\{B_a : a \in A\}$,

$$|W| \le \left| \bigcup_{B_a \in W} B_a \right|.$$

Application 3: Hall matrices, 2/6

For example, if $A = \{1, 2, 3\}$ and $B = \{1, 2, 3, 4, 5\}$, and

$$B_1 = \{1, 2, 3\}, \quad B_2 = \{1, 4, 5\}, \quad B_3 = \{3, 5\},$$

then possible "marriages" are

(1,1), (2,4), (3,5) and (1,2), (2,1), (3,3).

But if

$$B_1 = \{2, 3, 4, 5\}, \quad B_2 = \{4, 5\}, \quad B_3 = \{5\}, \quad B_4 = \{4\},$$

then there are no possible "marriages" since if $W = \{B_2, B_3, B_4\}$, then

$$|W| = 3 > \left| \bigcup_{i=2}^{4} B_i \right| = |\{4, 5\}| = 2.$$

Application 3: Hall matrices 3/6 Suppose that

 $B_1 = \{1, 2, 3\}, \quad B_2 = \{2, 4\}, \quad B_3 = \{1, 2, 4\}, \quad B_4 = \{2, 4\}.$

Then this can be described by a Boolean matrix where row i is the "characteristic" function of B_i :

 $\begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}$

and "marriages" become permutation matrices contained this matrix. We say that such a matrix is a **Hall matrix** if it contains a permutation matrix, and denote by \mathbf{H}_n the monoid of all Hall matrices.

How many $n \times n$ Hall matrices are there?

Application 3: Hall matrices, 4/6

Lemma

If \mathbf{R}_n denotes the reflexive Boolean matrices and S_n the group of permutation matrices, then

$$\mathbf{H}_n = \langle S_n, \mathbf{R}_n \rangle.$$

Proof.

- Up to rearranging the rows and columns, Hall matrices are just reflexive Boolean matrices;
- Rearranging the rows and columns, is just post- and premultiplying by a permutation matrix.

Application 3: Hall matrices, 5/6

Hall matrices

1: define a bijection $\Psi : \{1, \dots, 2^{n^2 - n}\} \longrightarrow \mathbf{R}_n$ 2: $S := \emptyset, X := \emptyset$ 3: for $i \in \{1, \dots, 2^{n^2 - n}\}$ do 4: if $\Psi(i) \notin S$ then 5: $X \leftarrow X \cup \{\Psi(i)\}$ 6: $S \leftarrow \langle X \rangle$ 7: $X \leftarrow X$ up to rearranging rows and columns 8: return $\langle X, S_n \rangle$

It is well-known that \mathbf{R}_n is \mathscr{J} -trivial, and so the Froidure-Pin Algorithm is the "best" algorithm for computing it!

Application 3: Hall matrices, 6/6

n	$d(\mathbf{R}_n) \leq$	$d(\mathbf{H}_n) \leq d(\mathbf{H}_n)$	$ \mathbf{H}_n $
2	2	2	7
3	8	4	247
4	38	6	37 823
5	1414	12	$23 \ 191 \ 071$
6	?	?	$54 \ 812 \ 742 \ 655$

https://oeis.org/A227414

Thanks for listening!