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Philosophy
• GAP has two somewhat contradictory design goals 

• to allow users to pose questions in a way that seems natural to a working 
mathematician and get answers 

• to allow the expert computational mathematician to implement and apply the most 
advanced techniques to solve hard problems 

• The first is achieved to a limited extent.

gap> # to find an element of S_9 which is NOT an involution 
gap>Filtered(Elements(SymmetricGroup(9)), x-> x*x <> ())[1]; 
(7,9,8) 
gap> time; 
1197

• Replace 9 by say 15 and you quickly run out of memory. 

• 15! is roughly 1.3 x 1012. 

• This talk is about how to start thinking like an expert.



If you don’t need it don’t store it!

• This computes and stores the full list of elements of Sn 

• Then it checks each of them to see if it has order dividing 2 and stores a second 
list of all of those which don’t 

• Finally it returns the first one. 

• We can stop looking when we find one. GAP even provides a built in function to do 
this:

gap> n = 9;; Filtered(Elements(SymmetricGroup(n)), x-> x*x <> ())[1];

gap> n = 9;; First(Elements(SymmetricGroup(n)), x-> x*x <> ());

• Stopping things as soon as possible is an important principle. In this 
case though the real problem is computing and storing all the 
elements 

• Let’s explore some alternatives



Enumerators
• Enumerator returns a list of elements of a domain which may be virtual 

• also EnumeratorSorted — but only if you need it 

• For many objects it is quick to construct, but may be slower to access

gap> e := Enumerator(SymmetricGroup(99));
<enumerator of perm group>
gap> Length(e);
933262154439441526816992388562667004907159682643816214685929638952175999932299\
156089414639761565182862536979208272237582511852109168640000000000000000000000
gap> e[10^100];
(2,60,99,55,54,65,7,16,18,32,70,15,5,37,43,97,19,31,66,30,90,17,29,85,28,67,
27,62,26,34,52,59)(3,44,73,47,95,45,51,68,50,86,49,83,40,36,81,35,93,12,76,11,
75,10,46,9,96,8,53,42,41,22,78,21,38,20,24,63,23,48,39,56,4,6,58,14,80,13,25,
33)

• See also EnumeratorOfCartesianProduct, 
EnumeratorOfTuples and EnumeratorOf Combinations.



Iterators
• Even an Enumerator can be too heavyweight  

• sometimes you don’t need to even number the elements, or know how many there are 

• For this GAP has Iterators 

• IsDoneIterator and NextIterator operations

gap> n := 9;; i := Iterator(SymmetricGroup(n));; 
gap> while not IsDoneIterator(i) do x := NextIterator(i); if x*x = () then break; fi; od;
gap> x;
()

• or more concisely, thanks to some built-in magic:

gap> n := 9;; for x in SymmetricGroup(n) do if x *x = () then break; fi; od;
gap> x;
()

• or even

gap> n := 9;; First(SymmetricGroup(n), x->x*x = ());
()



Randomness
• Sometimes you can’t even make an iterator for your group easily, but 

you know the elements you want exist and are not too rare 

• So make pseudo-random elements of the group until you find one

gap> g := SL(10,3);
SL(10,3)
gap> repeat x := PseudoRandom(g); until Order(x) = (3^10-1)/2;
gap> Display(x);
 2 . 2 . 1 . . 2 1 1
 . 1 . 1 2 1 1 2 1 2
 . 1 1 1 1 . . . 1 1
 . . . 1 1 2 1 1 2 1
 . 2 2 . 2 2 1 . . .
 2 . 1 . 2 2 2 2 1 2
 2 2 1 1 . 2 2 2 2 2
 2 1 1 . 2 . 1 . 2 .
 2 1 1 . 2 2 1 1 1 .
 . . 2 1 1 2 2 2 2 1 



But is searching through all the elements 
the right thing to do in the first place?

• Element order is a conjugacy invariant 

• For many groups there are ways of finding conjugacy class 
representatives that are faster than listing all elements 

• or they might be already known and stored
gap> n := 9;; Representative(First(ConjugacyClasses(SymmetricGroup(n)), 
c->Representative(c)^2 <> ()));
(1,2,3)

• This is one of the most powerful techniques, especially 
for non-abelian simple groups and things close to them 

• Of course if you are really working in S_n you can simply 
construct the answer as a permutation



Narrowing the Search

• For larger values of 12, this get slow. 

• because it searches lots of elements that fix 2 before it looks at anything that moves 1 to 2 

• Use a bit of maths  

• the elements that map [1,2,3,4,5] to [1,3,5,7,9] lie is a coset of a sequence stabilizer

gap> First(SymmetricGroup(12), x-> OnTuples([1,2,3,4,5],x) = [1,3,5,7,9] and 
Order(x) = 7); time;
(2,3,5,9,4,7,12)
11377

gap> g := SymmetricGroup(12);; s := Stabilizer(g,[1,2,3,4,5],OnTuples);;
gap> r := RepresentativeAction(g,[1,2,3,4,5],[1,3,5,7,9],OnTuples);
(2,3,5,9,8,6)(4,7)
gap> First(s,x->Order(x*r) = 7)*r;
(2,3,5,9,4,7,6)



General Principles
• Searching for an element in a group 

• Don’t write down the list of elements first 

• Stop when you’ve found it 

• Stop looking at other elements as soon as you know they’re not it 

• order of a matrix can be large and a bit slow to compute 

• if all you care about is whether it is 2, just check “IsOne(x*x) and not 
IsOne(x)” 

• Try and identify a subgroup, or coset or conjugacy class that it lies in 

• remember Sylow subgroups! 

• automorphism group sometimes helps too 

• Search only in there



Searching For a Subgroup
• Even worse — quite small groups can have very many subgroups 

• Some kinds that are eas(ier) to find 

• Cyclic subgroups (via ConjugacyClasses). 

• NormalSubgroups. 

• Derived, Lower Central etc. series. 

• Sylow subgroups. 

• Maximal subgroups (for some groups). 

• MaximalSubgroups will return all subgroups. You are likely to want ony 
MaximalSubgroupClassReps. 

• Ask yourself if one of these lists might include the one you want, or at least help you on 
your way



Searching for multiple elements
• Conjecture: U3(3) cannot be generated by three involutions 

• |U3(3)| = 6048 

• So we know some things not to do: 

• list all 216G triples of elements of U3(3) and filter out all the ones that 
generate the group and consist of involutions 

• use IteratorOfTuples to run through all 216G… 

• use IteratorOfCombinations to run through 36G unordered triples 

• the same, but test for involutions first 

• would take a few hours on my laptops 

• find the involutions first (there are just 63 of them) and run over triples 

• takes 22 seconds



gap> g := PSU(3,3);
<permutation group of size 6048 with 2 generators>
gap> is := Filtered(g, x->Order(x) = 2);;
gap> Length(is);
63
gap> i := IteratorOfCombinations(is,3);; ct := 0;
0
gap> i := IteratorOfCombinations(is,3); while not IsDoneIterator(i) do 
> x := NextIterator(i); if Subgroup(g,x) = g then break; fi; ct := ct+1; od;
<iterator>
#G  FULL  736236/  84320kb live   78877K/   4583mb dead    13995/   1180mb free
time;
ct;
Binogap> time;
21859
gap> ct;
39711
gap> Binomial(63,3);
39711



Searching for multiple elements
• We still haven’t used conjugacy 

• We could choose our first involution to be a conjugacy class rep 

• there is only one conjugacy class of involutions 

• reduce search from Binomial(63,3) to Binomial(62,2) 

• But now the second involution can be chosen up to conjugacy in the 
centraliser of the first one 

• just four cases to consider 

• search is now 4*61 cases 

• Of course the third one can be chosen up to conjugacy in the normaliser of the 
subgroup generated by the first two….. 

• If the things you are searching for are not all the same, then the order in which 
you look at them also matters



Morpheus
• This type of search for sequences of elements that generate 

something is nicely implemented by Alexander Hulpke in a part 
of the GAP library called Morpheus 

• There are various functions that access morpheus documented 
in the library under “Searching for Homomorphisms” 

• Our example is asking whether U3(3) is a quotient of the free 
product of three cyclic groups of order 2

gap> g:=PSU(3,3);;
gap> F:=FreeGroup(3);;
gap> F:=F/[F.1^2,F.2^2,F.3^2];;
gap> GQuotients(F,g);
[  ]
gap> time;
206



Morpheus Ctd

• So U3(3) is (2,6) generated in two distinct ways. 

• Presented as homomorphisms — easy to recover 
the generators if you want them 

• Other Morpheus functions:  AllHomomorphisms, 
AutomorphismGroup, IsomorphicSubgroups 

• A powerful tool for many purposes

gap> F:=FreeGroup(2);;
gap> F:=F/[F.1^2,F.2^6];;
gap> GQuotients(F,g);
[ [ f1, f2 ] -> [ (3,4)(5,8)(6,9)(7,10)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34). . . , 
  [ f1, f2 ] -> [ (1,11)(3,20)(4,29)(5,83)(6,74)(7,65)(8,56)(9,47)(10,38)(14,19) . . . ] ]



Anecdote: Extreme Searching
• Looking for 2,3,7 triples in a a permutation group G so big that main memory could 

only hold two permutations 

• expecting to have to check millions of cases 

• on a 16MHz CPU shared with the entire university 

• this was a while ago 

• Know (from character table) all the conjugacy classes of elements order 2 and 3 — 
and have representatives 

• Fix T order 2 and S order 3 which generate G 

• run through all words W in ST and SST up to some length 

• trace points one by one through (TW-1SW)7 

• as soon as one does not get to the start you can discard that W. 

• Searches tens of thousands of cases for the cost of one permutation multiply



Working in the right Group
• Mathematicians are very sloppy 

• they constantly identify isomorphic groups 

• So A5 “is” PSL(2,5) and SL(2,4) and <a,b | a2 = b3 = 
(ab)5 = 1> and <(1,3,6,2,4), (1,2,3)(4,5,6)> 

• but computationally these are different  

• choose the right one to work in 

• Two tools for moving between them: 

• homomorphisms and straight-line programs



Finitely Presented Groups
• Lots of functionality in GAP for fp groups — mostly 

to do with identifying unknown ones 

• Lots of textbooks that define groups by 
presentations: D2n = <a,b | an = (ab)2 = b2 = 1> 

• GAP supports some general group theoretic 
computation with fp groups that turn out to be finite 

• But it’s usually the wrong way to do things



Finitely Presented Groups
gap> f := FreeGroup("a","b");
<free group on the generators [ a, b ]>
gap> AssignGeneratorVariables(f);
#I  Global variable `a' is already defined and will be overwritten
#I  Global variable `b' is already defined and will be overwritten
#I  Assigned the global variables [ a, b ]
gap> g := f/[a^2,b^3,(a*b)^7, Comm(a,b)^8];
<fp group on the generators [ a, b ]>
gap> Sum(Elements(g), Order);;time;
#G  FULL  680861/  77486kb live   85919K/   4610mb dead    12986/   1172mb free
#G  FULL  703271/  76510kb live   36873K/   2643mb dead    13204/   1171mb free
14236
gap> x := Random(g);
b*a^-1*b^-1*(a^-1*b^-1*a^-1*b)^3*(a^-1*b^-1)^3*a*b^-1*a*b*(a*b*a*b^-1)^2*a*b^-1



Using Homomorphisms
. . . . . . . .
gap> g := f/[a^2,b^3,(a*b)^7, Comm(a,b)^8];
<fp group on the generators [ a, b ]>
gap> phi := IsomorphismPermGroup(g);
#G  FULL  678461/  75814kb live   50448K/   3000mb dead    12758/   1170mb free
[ a, b ] -> [ (1,2)(3,5)(4,6)(7,11)(8,12)(9,13)(10,14)(16,20)(17,21)(18,22)(19,23)(25,
    29)(26,27)(28,30)(31,34)(32,35)(33,36)(37,41)(38,42)(39,43)(40,44)(45,50)(46,51)(48,
    52)(49,53)(54,56), (2,3,4)(5,7,8)(6,9,10)(11,15,14)(12,16,17)(13,18,19)(20,24,
    23)(21,25,26)(22,27,28)(29,31,32)(30,33,34)(35,37,38)(36,39,40)(41,45,46)(42,47,
    43)(44,48,49)(50,53,54)(51,55,52) ]
gap> h := ImagesSource(phi);
<permutation group of size 10752 with 2 generators>
gap> Sum(Elements(h), Order);; time;
22
gap> x := Random(h);
(1,14,56,52)(2,21,20,41,54,32,42,8)(3,55,23,11)(4,49,47,30,53,6,24,28)(5,13,31,39,45,40,
26,19)(7,34,29,44)(9,46,27,25)(10,12,33,35,48,37,22,17)(15,43,51,50)(16,36,38,18)
gap> PreImagesRepresentative(phi,x);
(b^-1*a^-1*b*a^-1)^3*b^-1*a^-1*b^2*(a*b*a*b^-1)^3*(a*b)^2*a^-1*b*(a^-1*b^-1)^2*a^-1



Other Isomorphism 
Constructors

• Isomorphism[Special]PcGroup 

• pcgroups are usually the fastest representation for solvable groups 

• IsomorphismFpGroup 

• basically only if you want a presentation of your group 

• SmallerDegreePermRep 

• heuristic  

• GAP will sometimes do this for you 

• see ?NiceMonomorphism or ?NiceObject  

• but it can be better to do it by hand



A Few Homomorphism 
Operations

• Part of general mapping (relation) machinery 

• Source and Range (domain and codomain)  

• given when the morphism is constructed 

• morphism does not need to be total or onto, so they may be bigger than you expect 

• ImagesSource and PreImagesRange may be what you want 

• Image specialised to ImageElm and ImagesSet 

• which don’t check that the input is in the source 

• PreImagesRepresentative gives just ONE preimage 

• InverseGeneralMapping  

• CompositionMapping



gap> g:=Group((1,2,3,4),(1,2),(5,6,7));; 
gap> iso:=IsomorphismPcGroup(g);; 
gap> h:=Image(iso);; 
gap> z:=Centre(h);; 
gap> SetCentre(g,PreImage(iso,z)); 
gap> cl:=ConjugacyClasses(h);; 
gap> ncl:=[];; 
gap> for c in cl do 
> nc:=ConjugacyClass(g, 
> PreImage(iso,Representative(c)));; 
> SetSize(nc,Size(c)); 
> SetStabilizerOfExternalSet(nc, 
> PreImage(iso,StabilizerOfExternalSet(c))); 
> Add(ncl,nc); 
> od; 
gap> List(ncl,Size); 
[ 1, 1, 6, 8, 3, 1, 6, 8, 3, 6, 6, 8, 3, 6, 6 ] 
gap> SetConjugacyClasses(g,ncl);



Homorphisms in General
• Even if you can’t find an isomorphism to a nicer group, you may be able to find a 

homomorphism 

• solve your problem in the image first and refine
gap> g := Group((1,2),(3,4),(5,6),(7,8),(9,10,11),(11,12,13));
Group([ (1,2), (3,4), (5,6), (7,8), (9,10,11), (11,12,13) ])
gap> Number(g, x-> Order(x) mod 2 = 1); Size(g);
45
960
gap> Orbits(g,MovedPoints(g));
[ [ 1, 2 ], [ 3, 4 ], [ 5, 6 ], [ 7, 8 ], [ 9, 10, 11, 12, 13 ] ]
gap> phi := ActionHomomorphism(g,[1..8]);
<action homomorphism>
gap> h := ImagesSource(phi);
Group([ (1,2), (3,4), (5,6), (7,8) ])
gap> odds := Filtered(h, x->Order(x) mod 2 = 1);;
gap> p := PreImagesSet(phi,odds);;
gap> odds := Filtered(h, x->Order(x) mod 2 = 1);; Length(odds);
1
gap> p := PreImagesSet(phi,odds);;
gap> Length(p); Number(p, x->Order(x) mod 2 = 1);
60
45



Not all homomorphisms are equal
• If you just make a GroupHomorphismByImages (by giving 

images of generators) 

• it can be slow to make because it checks (use 
GroupHomorphismByImagesNC if you are sure you are right) 

• Image and preimage computation can be slow, or preimages 
can be “nasty” (long words in FP group)  

• essential because factorisation in terms of generators is 
not always easy 

• ActionHomorphisms are usually good 

• So are most things produced by IsomorphismXXXGroup



Random Tips 1
• Avoid long lists of mutable objects

• since the objects in the list might change “under its feet” the list can’t 
remember 

• whether it’s sorted 

• whether the entries are all from the same family 

• so whenever you try and search it or call an operation on it, it has to look at 
every element 

• can become very slow 

• lists of immutable objects are much better 

• sorted lists of immutable comparable objects can use binary search



Random Tips 2
• There are space and time efficient representations of vectors and matrices over 

finite fields 

• up to order 256 in the kernel 

• bigger fields in package cvec  

• Vectors and matrices are not always in these representations by default  

• among other reasons because deciding whether this vector is “really” over 
GF(3) or GF(9) requires prescience 

• ConvertToVectorRep(v, q) and ConvertToMatrixRep(m,q) convert in place 

• cvec has its own functions 

• working with large uncompressed vectors or matrices is a bad idea.



Further Reading
• A lot of this talk was taken from Alexander Hulpke’s 

talk “Using GAP”, especially section 4  

• You  can read the original without my mistakes at 
http://www.math.colostate.edu/~hulpke/paper/
gap4tut.pdf 

• A lot of similar ideas are found in my paper “The Art 
and Science of Computing in Large Groups” (in 
Bosma & van der Poorten: Computational Algebra 
and Number Theory, 1995, Springer

http://www.math.colostate.edu/~hulpke/paper/gap4tut.pdf
http://www.math.colostate.edu/~hulpke/paper/gap4tut.pdf

