Reformation: A Domain-Independent Algorithm for Theory Repair

Alan Bundy Joint work with Boris Mitrovic

> School of Informatics, University of Edinburgh

University of St Andrews, 27th November 2013

Outline

1 The Need for Language Repair

- 2 The Reformation Algorithm
- 3 Discussion

Repairing Faulty Theories

KnowItAll Ontology:

```
cap_of(Tokyo, Japan) cap_of(Kyoto, Japan)
```

Proof of inconsistency:

```
\frac{\textit{cap\_of}(\textit{Kyoto},\textit{Japan}), \quad \textit{cap\_of}(x,z) \land \textit{cap\_of}(y,z) \implies x = y}{\textit{Cap\_of}(\textit{Kyoto},\textit{Japan}),} \frac{\textit{cap\_of}(\textit{Kyoto},\textit{Japan}), \quad \textit{cap\_of}(y,\textit{Japan}) \implies \textit{Tokyo} = y}{\textit{Tokyo} = \textit{Kyoto}}
```

Reformation repair:

Block unification of $cap_of(Kyoto, Japan)$ and $cap_of(y, Japan)$, e.g., change $cap_of(Kyoto, Japan)$ to $was_cap_of(Kyoto, Japan)$, or add time argument to cap_of , e.g., present, past.

Repairing Planning Failures

Plan failure in ORS: Mismatch of

Money(PA, £200) and $Money(PA, £200, Credit_Card)$

Reformation repair: Unblock failed unification.

Change planning agent's *Money*/2 to *Money*/3.

Repairing Physics Theories

Where's My Stuff Trigger:

$$O_1 \vdash f(stuff) = v_1$$
 $O_2 \vdash f(stuff) = v_2$
 $O_{arith} \vdash v_1 \neq v_2$

Proof of Inconsistency:

$$\underbrace{\frac{f(\mathit{stuff}) = v_1, \quad y = x \land y = z \implies x = z}{f(\mathit{stuff}) = v_2,} \frac{f(\mathit{stuff}) = z \implies v_1 = z}{v_1 = v_2}}_{\text{$V_1 = V_2$}}$$

Reformation Repair:

Block unification of $f(stuff) = v_2$ and f(stuff) = z. e.g., rename two occurrences of *stuff* apart.

Example: Repairing a Faulty Proof of Cauchy's

Faulty Theorem: The limit of a convergent series of continuous functions is itself continuous [Cauchy].

Counter-Example: Square wave (discontinuous) is convergent sum of sine waves (continuous) [Fourier].

Failed unification:

$$y \ge y$$
 and $n \ge m(\epsilon/3, x + b(\delta(\epsilon/3, x, n)))$

due to an occurs check failure, where m, δ and b are Skolem function.

Repair: Change 'convergent' to 'uniformly convergent'.

Convergent:

$$\forall x. \forall \epsilon > 0. \exists m. \forall n \geq m. \mid \sum_{i=-\infty}^{n} f_i(x) \mid < \epsilon$$

Uniformly Convergent:

Convergent:
$$\forall \epsilon > 0. \exists m. \forall x. \forall n \geq m. \mid \sum_{i=1}^{n} f_i(x) \mid < \epsilon$$

Note that $\forall x$ is moved to after $\exists m$.

Case	Before	Condition	After
Base	Τ; σ		Terminates
Trivial	$s \equiv s \wedge u; \sigma$		и; σ
Decomp	$f(\vec{s}^n) \equiv f(\vec{t}^n) \wedge u; \sigma$		$\bigwedge_{i=1}^{n} s_i \equiv t_i \wedge u; \sigma$
Clash	$f(\vec{s}^m) \equiv g(\vec{t}^n) \wedge u; \sigma$	$f \neq g \lor m \neq n$	fail
Orient	$t \equiv x \wedge u; \sigma$		$x \equiv t \wedge u; \sigma$
Occurs	$x \equiv s \wedge u; \sigma$	$x \in \mathcal{V}(s) \land x \neq s$	fail
Var Elim	$x \equiv s \wedge u; \sigma$	$x \not\in \mathcal{V}(s)$	$u\{x/s\}; \sigma \oplus \{x/s\}$

- Adapted from [Baader & Snyder, 2001][p455].
- Returns unique most-general unifier.

The Modified Unification Algorithm

Case	Before	Condition	After
Base	Τ; σ		Terminates
CC_s	$f(\vec{s}^m) \equiv g(\vec{t}^n)$	$f = g \wedge n = m$	$\bigwedge_{i=1}^{n} s_i \equiv t_i \wedge u; \sigma$
CC_f	∧ <i>u</i> ; σ	$f \neq g \lor n \neq m$	Fail
VC_f	$x \equiv t \wedge u; \sigma$	$x \in V(t)$	Fail
VC_s	or $t \equiv x \wedge u$; σ	$x \not\in \mathcal{V}(t)$	$u\{x/t\}; \sigma \oplus \{x/t\}$
$VV_{=}$	$x \equiv x \wedge u; \sigma$		<i>u</i> ; σ
VV_{\neq}	$x \equiv y \wedge u; \sigma$	$x \neq y$	$u\{x/y\}; \sigma \oplus \{x/y\}$

- Equivalent to standard unification algorithm.
- Groups compound/compound and variable/compound cases into success/fail.

The Reformation Algorithm

Case	Before	Condition	Block	Unblock
Base	Т		Failure	Success
CCs		$f = g \wedge m = n$	Make $f(\vec{s}^m) \neq f(\vec{t}^m)$	
			$\bigvee_{i=1}^{n}$ Block $s_i \equiv t_i$	$\bigwedge_{i=1}^{n}$ Unblock $s_i \equiv t_i$
	$f(\vec{s}^m) \equiv g(\vec{t}^n)$		∨ Block u	∧ Unblock u
CC_f	$\wedge u$	$f \neq g \lor m \neq n$	Success	Make $f(\vec{s}^m) = g(\vec{t}^n)$
				$\bigwedge_{i=1}^n \text{Unblock } \nu(s_i) \equiv \nu(t_i)$
				\wedge Unblock $\nu(u)$
VC_f		$x \in \mathcal{V}(t)$	Success	Make $x \not\in \mathcal{V}(t)$
	$x \equiv t \wedge u$			\wedge Unblock $\nu(u\{x/t\})$
VC _s	or $t \equiv x \wedge u$	$x \not\in \mathcal{V}(t)$	Make $x \in \mathcal{V}(t)$	
			∨ Block u{x/t}	Unblock $u\{x/t\}$

- Adapts modified unification algorithm.
- Flips success and failure cases to block/unblock unification.
- Blocking is a disjunction; unblocking a conjunction.
- Implemented and evaluated in SWI Prolog.

Example: Family Relations

Unprovable truth:

```
\frac{\textit{Parent}(\textit{Camilla}, \textit{William}), \quad \neg \textit{Parent}(\textit{p}, \textit{c}, \textit{Step}) \lor \textit{StepMother}(\textit{p}, \textit{c})}{\times}
```

1 of 2 repairs: Add 3rd argument to Parent(Camilla, William).

Successful resolution:

```
\frac{Parent(Camilla, William, Step), \neg Parent(p, c, Step) \lor StepMother(p, c)}{StepMother(Camilla, William)}
```


The Many-Sorted Reformation Algorithm

Case	Before	Condition	Block	Unblock
Base	Т		Failure	Success
CCs	$f(\vec{s}^m):\tau_f$ \equiv	$f = g$ $\wedge m = n$	Make $f(\vec{s}^m) \neq f(\vec{t}^m)$ $\bigvee_{i=1}^n \text{Block } s_i \equiv t_i$ $\vee \text{Block } u$	$egin{aligned} igwedge_{i=1}^n & Unblock \ s_i \equiv t_i \ & \wedge \ & Unblock \ u \end{aligned}$
CC _f	$g(ilde{t}^n)$: $ au_g$	$ f \neq g \\ \lor m \neq n $	Success	Make $f(\overline{s}^m) = g(\overline{t}^n)$
VC _s	$x:\tau_X \equiv t:\tau_t \wedge u$ or	$\begin{array}{c} x \not\in V(t) \\ \wedge \tau_t \preceq^* \tau_x \end{array}$	$\begin{array}{c} Make \ x \in V(t) \\ \lor \ \tau_t \not\preceq^* \tau_x \\ \lor \ Block \ u\{x:\tau_x/t:\tau_t\} \end{array}$	Unblock $u\{x: \tau_X/t: \tau_t\}$
VC _f	$t:\tau_t \equiv x:\tau_x \wedge u$	$x \in V(t) \\ \vee \tau_t \not\preceq^* \tau_x$	Success	
VVs	$x:\tau_X \equiv$	$D = glbs(\tau_X, \tau_Y)$ $\land D \neq \emptyset$	Make $glbs(\tau_x, \tau_y) = \emptyset \lor$	$\bigvee_{ au_d \in D} $ Unblock $u\{x: au_x/y: au_d, y: au_y/y: au_d\}$
VV_f	<i>y</i> :τ _y ∧ u	$glbs(au_x, au_y)=\emptyset$	Success	Make $glbs(\tau_x, \tau_y) \neq \emptyset \land$ Unblock $u\{x:\tau_d/y:\tau_d\}$

- Extended reformation to many-sorted logics.
 - Repairs now include splitting and merging of sorts.
 - Plus reorganisation of sort hierarchy.

Example: Flying Penguins

Contradiction:

```
\negFlies(Penguin4 : Penguin), Flies(x : FlyingAnimal)
```

where $Penguin \prec Bird$ and $Bird \prec FlyingAnimal$.

1 of 3 repairs: Split Bird into FlyingBird and Bird.

- Replace Bird

 FlyingAnimal with FlyingBird

 FlyingAnimal.
- Add FlyingBird ≺ Bird.

Search Space Control

- Huge search space: many possible repairs for every unwanted unification.
 - Each proof step requires unification.
 - Each unification step suggests multiple repairs.
- Need heuristics to prune and prioritise.
 - Protect some functions/predicates.
 - Keep repairs minimal.
 - Maximise blocked inconsistencies; minimise blocked truths.

Conclusion

- Language repair essential in many applications.
- Reformation is general-purpose algorithm.
- Huge search space requires heuristic control.
- Need to define minimality.
- Explore extensions to other logics, e.g., DL.

Baader, F. and Snyder, W. (2001).

Unification theory.

In Robinson, J. A. and Voronkov, A., (eds.), *Handbook of Automated Reasoning, Volume 1*, volume I, chapter 8, pages 447–553. Elsevier.

