
Insense Tutorial
Alan Dearle

1 Motivation
The aims of designing inSense for the DIAS-MC project were to produce a language
which

1. is specifically designed for WSN applications
2. is easy to learn and use for non-Computer Scientists
3. allows worst-case space and time usage of programs to be determined

statically

2 Design Guidelines
1. Easy to use language with familiar syntax
2. Can be used by unskilled programmers
3. Programmers don’t have to do any of the hard stuff – especially memory

management and synchronisation
4. Basic building blocks are components
5. These have zero syntactic nesting (and therefore no implicit dependencies)
6. Fractal composition – one component can instantiate other components (which

cannot be seen from outside them)
7. No sharing of any state
8. Need dynamicity – want to be able to replace components, perform rewiring

etc.
9. Separation of concerns – don’t mix up policies
10. Dependency injection – supply components with what they need when they

are constructed
11. Want to be able to reason about space and time

3 Overview
The basic computational unit in Insense is the component. Instances of components
may be created using constructors that are defined in a similar manner to Java, C# or
C++. Components are strongly encapsulated and interact with each other via typed
directional channels. Conceptually, each component instance contains a single thread
of control. The actions of this thread are called the component’s behaviour which is
specified in a syntactic entity of the same name. The actions in behaviour repeat
indefinitely until the component is stopped either by itself or another component.

Figure 1

Figure 1 shows three component instances joined together with two channels. Three
component instances exist in the figure each of a different type. In Insense, the type of
a component is determined by the types of the channels it presents. In the example the
component labelled Ints presents a single outgoing channel of type integer. The
middle component labelled Double presents two channels an in channel of type
integer and an out channel of type any. The component labelled StdOut presents a
single input channel of type any.
In Insense the types of the interfaces presented by these components may be written
as the following type declarations

type t1 is interface(out integer output)
type t2 is interface(in integer input; out any output)
type t3 is interface(in any input)

Code snippet 1

Note that these type declarations merely describe the types of components, they do
not define components or their behaviour.
In order to define a component a component declaration is required. A component
definition is needed. A component definition has four parts: a specification of the
interface it presents definitions of component variables, at least one constructor and
exactly one behaviour.

component Ints presents t1 {
 last = 0;

 constructor() {
 }

 behaviour {
 send last on output
 last := last + 1
 }
}

Code snippet 2

Code snippet 2 shows the definition of the component labelled Ints in Figure 1. A
component definition is introduced by the keyword component which is followed by
the component’s name. In practice this name is only used to identify which
component is being created when constructors are called. The name of the component
is always followed by the keyword presents which must be followed by a (comma-
separated) list of the interfaces it presents. In Code snippet 2 the component presents a
single interface the type t1 shown in Code snippet 1. The names of all channels in the
presented interfaces are automatically implicitly declared. Thus in this example, the
name output is implicitly brought into scope and is of type “out integer”.
The component contains the definition of a component variable called last. Note that
in Insense the types of declarations are inferred by the compiler and the “=” symbol is
used to initialise the variable with a value. Component variables are local to the
component in which they are declared and may not be accessed outwith their
declaring component. The scope of component variables are from the point they are
declared until the end of the component.
Component instances are created by calling one of the component’s constructors. Like
constructors in Java, they may perform arbitrary computation but are normally used to
perform dependency injection by initialising component variables. You can have as
many constructors as are required but there must be at least one,
The keyword behaviour introduces the behaviour of the component which repeats
until the component is stopped either by itself or another component using the
keyword stop. In Code snippet 2 the behaviour writes the current value of variable
last on the channel output before incrementing it (using the update operator written
“:=”). Note that the channel output is declared implicitly as a result of the presents
statement in the component definition.
Instances of components are created by calling a constructor, an instance of the Ints
component shown in Code snippet 2 may be created as shown in Code snippet 3.

ints_instance = new Ints()

Code snippet 3

Components may be wired together by connecting the output of one component to the
input of another. To illustrate we introduce a new components called double in Code
snippet 4. Double reads integers from an input using the “receive from” construct. It
wraps the values received from its input in an any and sends it on a channel called
output.

component Double presents t2 {

 constructor() {
 }

 behaviour {
 next = receive from input
 send any(next) on output
 }
}

Code snippet 4

To instantiate instances of Ints and Double and wire them up we write the following
code shown in Code snippet 5.

ints_instance= new Ints()
double_instance = new Double()
connect ints_instance to double_instance.input

Code snippet 5

If we had an instance of a standard out component called stdout and with interface t3,
we could write,

connect double_instance.output to stdout.input

Code snippet 6

This would complete a running system containing three processes shown in Figure 1.

4 Universe of Discourse and Type System
The InSense base types are: integer, real, bool, string, byte, any and enum. These are
defined in sections 4.1 to 4.7 below. InSense also supports five constructed types:
Arrays, Channels, Interfaces, Functions, and Structs.

4.1 Integer
The type integer defines the class of 16 bit 2s complement integers. These range from
minint to maxint (TODO define literals) which have the values -32768 and 32767
respectively.

4.2 Real
The type real provides to 32-bit IEEE single precision floating point numbers.

4.3 Bool
The type bool is the class of Booleans – two Boolean literals are provided – true and
false.

4.4 Byte
The type byte defines unsigned 8 bit values ranging from 0 to 255. In Insense byte
literals are written with a proceeding ‘#’ e.g. #134.

4.5 String
The type string is the class of concatenations of UTF-8 characters.

4.6 Any
The type any is a base type containing values of any other type. Any may be thought
of as a wrapper that permits an arbitrary type to be wrapped in an any and later
unwrapped using projection. There are no literals of type any. Anys are created using
the keyword any as follows:

anany = any(3)
anotherany = any(true)

Code snippet 7

In the code fragment above both anany and anotherany are of type any.

4.7 Enum
Enums provide enumerated types (as recently discovered by Java).

4.8 Naming types
In Insense types are commonly named. For example an interface might be named as
follows:

type myinterface is interface(in integer input; out any output)

Code snippet 8

4.9 Arrays
Arrays are fixed length data structures containing values of a single type. Arrays are
indexed from zero. Array types are specified using square brackets as in Java. Thus
the type of an array of integers is written integer[]. Two different syntactic forms for
creating arrays exist as shown below.

intarray = new integer[5] of 5
anotherarray = new { 2,3,4,5,6 }

Code snippet 9

Both arrays shown above have a lower bound of zero and an upper bound of four.
Both are or type integer[]. The array intarray has all its elements intialised to the
value 5 whereas the elements of anotherarray are initialised with the values 2,3,4,5,6.
Two predefined functions are provided for arrays – size() and upb() which return the
number of elements in an array and its upper bound respectively. (TODO define
these).
Multi-dimension arrays may be formed as shown in Code snippet 10.

threeD = new integer[2][3][4] of 5

Code snippet 10

This creates an array of array of arrays with all the elements initialised to 5 as shown
in Figure 2.

Figure 2

4.10 Channels
Channels are the communication mechanism in Insense. They are typed, directional
and synchronous. That is, each channel has a buffer size of one. The type of an input
channel of integers is written as follows:

in integer

Code snippet 11

where as the type of an output channel of anys is written:

out any

Code snippet 12

4.11 Interfaces
Interfaces are used to define the way in which component instances can interact. An
interface is a collection of named channels. For example the following interface
defines

interface(in integer input1, interface2; out any output)

Code snippet 13

4.12 Functions
In InSense functions are abstractions over expressions. The Syntax for function
declarations is shown in Figure 3.

<function_decl> ::= function < identifier> <lrb> [<named_param_list>] <rrb>
 <colon> <type>
 <lcb> <expression> <rcb>

Figure 3

Functions may be declared in two places in an inSense program1: at the top level as a
global declaration in the syntactic construct <global_decl> or as a component local
declaration. Functions declared globally are global to all components in a compilation
unit2 whereas functions defined with a component may only be used in the component
in which they are declared. An example function declaration is shown in Code snippet
14.

function domath(integer i, j, k; boolean unused) : integer {
 i + j + k
}

Code snippet 14

Functions are called in the normal manner e.g. to execute the above function the
programmer may write

myint = domath(2,3,5,true)

Code snippet 15

4.13 Structs
Simple, labelled cross product data structures may be constructed using structs in
Insense. Unlike structs in other languages (notably C) you cannot create pointers to
structs. Therefore structs may be formed from any type other than other structs. An
example of a struct type definition is shown below.

type person is struct(string name; integer age)

Code snippet 16

Instances of structs are created using the keyword new followed by the name used to
declare a struct type. Therefore, if the type person had been defined as shown above,
an instance of that type may be created as follows.

al = new person(“al”, 47)

Code snippet 17

4.14 Type equivalence
TODO TYPE EQUIVALENCE AND TYPE RULES

5 Components
Components are the unit of system construction in Insense. A component is a closed
entity which presents an interface containing channels. Components may contain
some local variable declarations, at least one constructor and a behaviour. Like Java
classes, a component may have multiple constructors which each have a different type
signature. An example component is shown below:

1 Programs are not well defined at the moment.
2 Compilation Units are not well defined either.

type inttobool is interface(in integer input, out boolean output)

component checker presents inttobool {
 threshold = 10

 constructor() { }

 constructor(integer sz) {
 threshold := sz
 }

 behaviour {
 num = receive from input
 send num < threshold on output
 }
}

Code snippet 18

Note that the component presents the interface inttobool containing an input and an
output channel. The channel names declared in an interface type are automatically
declared in any component which presents that interface. Thus in the component
checker shown above, the channel names input and output are brought into scope at
the start of the component declaration. The component has a single component global
declaration, threshold which is of type integer. Note that the type is inferred from the
compulsory initialising expression.
Two constructors are provided. All constructors must be called constructor and if
more than one constructor is provided they must all have distinct types. In this
example, one constructor does nothing, the other sets the variable threshold to be size.
All components must contain a behaviour, which specifies what the component does.
All behaviours loop forever until they are stopped using the stop construct. In this
example, the behaviour reads integer values from the input channel and writes a
boolean on the output channel indicating whether the value read was less than or
greater than or equal to the threshold. Note that behaviours are blocking with respect
to their channels. The behaviour will block until a value is available o be read from
the input channel and will block on the output channel until it is free.

6 Clauses
There are 12 syntactic clause constructs: if, for, switch, declaration, assignment,
connect, disconnect, send, receive, select, try.. except and project. These constructs
are described in this section.

6.1 If clauses
The syntax of for clauses is the same as Java and C:

if <lrb> <clause> <rrb> <clause> [else <clause>]

Figure 4

The type of the first clause must be boolean, the two choice arms must be void.

6.2 Switch
TODO

6.3 For clauses

for <lrb> <identifier>
<equals> <expression> <dotdot> <expression>
[<colon>[+|-]<integer_literal>]<rrb> <clause>

Figure 5

For clauses are used for iteration. The for loop declares a control variable whose value
ranges from the value indicated by the first expression to that indicated by the second
expression. By default the increment is one; however, a different increment or
decrement may be specified using the optional [<colon> <integer_literal>] syntax.

evens = new boolean[10] of false
for(i = 0..9 : 2)
 evens[i] = true

Code snippet 19

Thus, the example shown in Code snippet 19 will initialise the elements
corresponding to the even indices to true and those corresponding to the odd indices
to false.

6.4 Declarations
In InSense there are two types of declarations: local declarations and global
declarations. Global declarations may only be made at the top level – that is not inside
any other syntactic construct. Local declarations may be made inside any sequence.
Global declarations are defined in the BNF as shown in Figure 6,

<global_decl> ::= <component_decl> | <function_decl> | <type_decl>

Figure 6

and local declarations as shown in Figure 7.

<decl> ::= <value_decl> | <function_decl> | <type_decl>

Figure 7

Component declarations are described in the Section entitled Components; function
declarations are described in the Section entitled Functions and type declarations are
described in the Section entitled Enum. That leaves value declarations which are
described here. The BNF for value declarations is shown in Figure 8.

<value_decl> ::= <identifier> [<equals> <value>]

Figure 8

As shown in Figure 8, value declarations are very simple, with names being
introduced with the equals (=) symbol with a value on the right hand side of the
equals as shown in Code snippet 20. Note that the type of the variable is inferred from
the initialising value. Note also that there is no way of introducing an un-initialised
identifier (this being 2007 and all).

myinteger = 7
abool = false

Code snippet 20

6.5 Assignment
Assignment to variables is made in the traditional manner using the := operator. Thus
the value myinteger introduced in Code snippet 20 may be updated as shown in Code
snippet 21. Note that equals makes declarations whereas := performs assignment.

myinteger := 7

Code snippet 21

6.6 Connect
Connect is used to connect an input and output channel together. Typically this is
performed to permit communication to occur between two components. The syntax of
the connect clause is shown in Figure 9.

<connect_clause> ::= connect <expression> to <expression>

Figure 9

Both expressions must evaluate to a channel value with the type of each being
symmetric, that is, if one channel is of type “in integer” the other must be of type “out
integer”. An example of connect being used is shown in Code snippet 6.

6.7 Disconnect
Disconnect is the opposite of connect; that is, it disconnects two previously connected
channels. Either end of a pair of connected channels may be specified. Al is worried
about this…

<disconnect_clause> ::= disconnect <expression>

Figure 10

6.8 Send
The send construct is used to send a value on a channel, the value is defined by the
expression and the channel is specified using the name as shown in Figure 11. Send is
a blocking operation. If the channel already contains a value (placed on it either by the
caller of send or by another executing component) the execution will block until the
channel is empty. If multiple component instances are attempting to write on a single
channel the order in which they write on the channel (if at all) is non-deterministic.

<send_clause> ::= send [<expression>] on <name>

Figure 11

An example of the send construct being used is shown in Code snippet 4.

6.9 Receive
Just as send is used to send a value on a channel, receive is used to obtain a value
from a channel. Like send, receive is a blocking operation. If no value is on the
channel, the operation will block until a value is available. An example of the receive
construct being used is shown in Code snippet 4.

<receive_clause> ::= receive from <name>

Figure 12

6.10 Select
Sometimes you do not want a component to block on a particular channel and instead
want to read a value from any channel that has values available. This functionality is
provided by the select construct shown in Figure 13.

<select_clause> ::= select {
 <select_list>
 [default : <clause>]
 }

<select_list> ::= receive <identifier> from <name>
 [when <clause>] : <clause>
 [<select_list>]

Figure 13

The select construct is the most complex and most powerful clause in the language. It
provides non-deterministic, guarded channel selection over multiple channels. The
semantics of the construct is perhaps best explained with the example shown in Code
snippet 22. The behaviour of component selectExample contains a select clause. The
clause non-deterministically reads from one of the three channels chan1, chan2 and
chan3 presented in the interface threeChans presented by selectExample.
A select arm is eligible for execution only if input is available on the channel
specified in the arm. If input is not available on any channel the (optional) default is
executed. If no default is specified, the construct blocks until input is available on at
least one of the arms. If input is available on an arm, the (optional) when clause
associated with the arm is evaluated. If the when clause evaluates to true or if no when
clause is specified, the arm is eligible for evaluation. Finally, if no arms are available
for evaluation, the default is called or the execution blocks awaiting input on some
arm, otherwise one of the clauses on the right hand side of one of the eligible arms are
evaluated. If the construct blocks the re-evaluation of eligibility, the algorithm to
determine which arm is selected restarts from the beginning following the description
contained in this paragraph.

type threeChans is interface(in integer chan1, chan2; in bool chan3)
component selectExample presents foo {
 p = 8; q = false
 constructor() {
 }

 behaviour {
 select {
 receive x from chan1 when q : { p := x }
 receive y from chan2: p := y
 receive z from chan3 when p < 7 : q := z
 default: p := 1
 }
 }
}

Code snippet 22

Consider the example shown in Code snippet 22. Suppose that all three channels
contain values to be read. Therefore all arms are eligible. Next the guards are
evaluated, since p = 8, and q is false, the first and last arms are not eligible. The
assignment of y to p will be executed in the second arm. The value of y assigned to p
is the value waiting on chan2. An observant reader will note that this example is in
fact poor since the default clause will never be executed. Hopefully the above
description will be enough to see why – is it?

6.11 Try.. except
InSense contains a simple exception mechanism which is supported by the try..except
construct shown in Figure 14. Any exceptions thrown in the execution of the first
clause in the try..except construct causes flow of control to be passed to the second
clause. Exceptions may be caused in the normal manner with out of bounds indexing
operations, divide by zero etc.

<try_except> ::= try <clause> except <clause>

Figure 14

6.12 Project
The project clause is used for projecting out of an any. The type any is described in
Section 4.6 Any. The project clause is a type matching operation which permits the
type of value wrapped in an any to be discovered and extracted.

<project_clause> ::= project <clause> as <identifier> {
 <project_list>
 [default : <clause>]
 }

<project_list> ::= <type> : <clause> [<project_list>]

Figure 15

An example of the project clause being used is shown in Code snippet 23. In the
example, a declaration is made of a variable called anany whose type is any. Note that
the variable may hold a value of any type (hence the name any). The project
statement projects out of an any by matching against the type of the value enclosed
within it. In the example, two types (integer and bool) are tested for, if one of these
types matches that of the enclosed value the code following the colon is executed. In
the example, the boolean will match and the code “b := avalue” will be executed. The
value wrapped in the any is extracted in the “project anany as avalue” and that value
bound to the name avalue. Note that the type of avalue is different in each of the
project arms i.e. it is integer in the first arm, boolean in the second and the name is not
in scope in the default arm. In the example, since the boolean type is matched, the
value associated with avalue will be true and true will be assigned to the b.

 behaviour {
 a = 7
 b = true
 anany = any(a)
 anany:= any(b)
 project anany as avalue {
 integer : { a := avalue }
 bool : { b := avalue }
 default : { a := 32 }
 }
}

Code snippet 23

7 Expressions

7.1 Boolean Expressions
There are two boolean literals, true and false and three operators: not (written !) and
two binary operators, and and or. The precedence ordering of these operators in
descending order is: not, and, or. This is reflected in the BNF shown in Figure 16.

<expression> ::= <exp1> {<or> <exp1>}
<exp1> ::= <exp2> {<and> <exp2>}
<exp2> ::= [not_op] <exp3> [<rel_op> <exp3>]

Figure 16

The evaluation of non-strict, that is as soon as the result is found, no more
computation is performed on the expression.

7.2 Comparison operators
The usual comparison operators found in other languages are provided in inSense.
These are: equals, not equals, less than, greater than, greater than or equal to and less
than or equal to. These are written in the C/Java style namely, ==, !=, <, >, <= and >=.

7.3 Arithmetic expressions
Arithmetic may be performed on the types byte, integer, real. No automatic coercion
is provided by the language (check this). The syntax of arithmetic expressions is:

<exp3> ::= <exp4> { <add_op> <exp4> }
<exp4> ::= <exp5> { <mult_op> <exp4> }
<exp5> ::= [add_op] <exp6>
<mult_op> ::= <int_mult_op> | <real_mult_op> | <string_mult_op>
<int_mult_op> ::= * | / | %
<real_mult_op> ::= * | /
<string_mult_op> ::= ++
<add_op> ::= + | -

Figure 17

Where the operators have their normal C/Java meaning. Precedence todo

7.4 Identifiers
InSense identifiers start with a letter and are composed of letters and digits as defined
in the BNF shown in Figure 18. Thus the following are legal identifers:
 a, anidentifier, aComponent, Component1243;
and the following are not:
 123a, a.b, an_identifier.

<identifier> ::= <letter> [<id_follow>]
<id_follow> ::= <letter> [<id_follow>] | <digit> [<id_follow>]

Figure 18

7.5 Literals
There are 5 types of literals in InSense: integer, byte, real, boolean and string literals
as shown in Figure 19.

<literal> ::= <int_literal> | <real_literal> | <bool_literal> |
 <string_literal> | <byte_literal>
<int_literal> ::= [add_op] digit {digit}
<byte_literal> ::= # [digit {digit}
<real_literal ::= int_literal.{digit}[e <int_literal>]
<bool_literal> ::= true | false
<string_literal> ::= " {<char>} "

Figure 19

The literals are described in more detail in the corresponding sub sections of the
section entitled Universe of Discourse and Type System.

7.6 Function application
<expression> <lrb> [<clause_list>] <rrb> | // application
Al is currently here

7.7 Sequences
<clause_block>
<clause_block> ::= <lcb> <clause_sequence> <rcb>

7.8 Dereferencing operators
<dereference> ::= <component_struct_dereference> | <array _dereference>
<component_struct_dereference> ::= <expression> { <dot> <identifier> }
<array_struct_dereference> ::= <expression> <lsb> [<clause_list>] <rsb>

8 Index

A
assignment, 11

C
Clauses

assignment, 11
connect, 11
declarations, 11
disconnect, 12
for, 10
if, 10
project, 14
receive, 12
select, 12
send, 12
try, 14

Clauses, 10
Components, 9
connect, 11

D
declarations, 11
Design Guidelines, 1
disconnect, 12

F
for, 10
Functions, 8

I
if, 10

O
Overview, 1

P
project, 14

R
receive, 12

S
select, 12
send, 12

T
try, 14
Types, 5

Any, 6
Array, 7
Bool, 6
Byte, 6
Channel, 7
Components, 9
Enum, 6
Functions, 8
Integer, 6
Interface, 8
Naming, 6
Real, 6
String, 6
Structs, 8

9 Appendix A: Context Free Grammar

9.1 Programs
<prog> ::= {<global_decl> <semi_colon>} <sequence>

9.2 Global Declarations
// deleted global_decls
<global_decl> ::= <component_decl> | <function_decl> | <type_decl>
<component_decl> ::= component <identifier> presents <identifier_list>
 <component_body>
<component_body> ::= <lcb> <local_decls> <constructors> <behaviour> <rcb>
<local_decls> ::= <decl> <semi_colon> [<local_decls>]
<constructors> ::= <constructor> <semi_colon> [<constructors>]
<constructor> ::= constructor <lrb> [<named_param_list>] <rrb>
 <block>
<named_param_list> ::= <type> <identifier_list>
 [<semi_colon> <named_param_list>]
<behaviour> ::= behaviour <block>

<function_decl> ::= function < identifier> <lrb> [<named_param_list>] <rrb>
<colon> <type>
 <lcb> <expression> <rcb>
<identifier_list> ::= <identifier> [<comma> <identifier_list>]

9.3 Type Declarations
<type_decl> ::= type <identifier> is <type>
<type> ::= <type1> {<lsb> <rsb>}
<type1> ::= integer | real | bool | string | void | byte
 <interface_type> | <function_type> |
 <channel_type> | <struct_type> |
 <enum_type> | <identifier>
<interface_type> ::= interface <lrb> <named_channel_list> <rrb>
<named_channel_list> ::= <named_channels [<semi_colon> <named_channel_list>]
<named_channels> ::= <channel_type> <identifier> [<comma> <identifier>]
<channel_type> ::= <direction> <type>
<direction> ::= in | out
<struct_type> ::= struct <lrb> <named_param_list> <rrb>
<type_list> ::= <type> [<semi_colon> <type_list>]
<enum_type> ::= enum <lrb> <identifier_list> <rrb>
<function_type> ::= function <lrb> <type_list> <rrb> <colon> <type>

9.4 Sequencing
<sequence> ::= <statement> [<semi_colon> <sequence>]
<statement> ::= <decl> | <catch_clause>
<block> ::= <lcb> <sequence> <rcb>
<clause_sequence> ::= <catch_clause> [<semi_colon> <clause_sequence>]
<catch_clause> ::= <try_except> | <clause>

9.5 Value Declarations
<decl> ::= <value_decl> | <function_decl> | <type_decl>
<value_decl> ::= <identifier> [<equals> <value>]
<value> ::= <clause> | <value_constructor>

9.6 Value Constructors
<value_constructor> ::= new <value_def>
<value_def> ::= <array_value> | <component_value> |
 <channel_value> | <struct_value>
<array_value> ::= <type1> <dim_expr> of <expression>
<dim_expr> ::= <lsb> <int_literal> <rsb> [<dim_expr>]
<component_value> ::= <identifier> <lrb> [<clause_list>] <rrb>
<channel_value> ::= <channel_type>
<value_decl_list> ::= <value_decl> [<comma> < value_decl_list>]
<struct_value> ::= <identifier> <lrb> [<clause_list>] <rrb>

9.7 Clauses
<try_except> ::= try <clause> except <clause>

<clause> ::= <if_clause> | <for_clause> |
 <switch_clause> | <assign_clause> | <simple_decl>
 <connect_clause> | <disconnect_clause> |
<select_clause> |
 <send_clause> | <receive_clause> | <project_clause> | |
<any>
 stop [<name>] | <expression>
<if_clause> ::= if <lrb> <clause> <rrb>
 <clause>
 [else <clause>]
<for_clause> ::= for <lrb> <identifier>

 <equals> <expression> <dotdot> <expression>
 [<colon>[+|-]<integer_literal>]<rrb> <clause
<switch_clause> ::= switch <lrb> <expression> <rrb>
 <lcb> <switch_list>
 [default <colon> <clause>] <rcb>
<switch_list> ::= <clause_list> <colon> <clause>
 [<semi_colon> <switch_list>]
<clause_list> ::= <clause> [<comma> <clause_list]
<assign_clause> ::= <name> <assign_op> <expression>
<simple_decl> ::= <identifier> <equals> <expression>
<connect_clause> ::= connect <expression> to <expression>
<disconnect_clause> ::= disconnect <expression>
<select_clause> ::= select <lcb> <select_list> [default <colon> <clause>]
<rcb>
<select_list> ::= receive <identifier> from <name> [when <clause>
]<colon> <clause> [<select_list>]
<send_clause> ::= send [<expression>] on <name>
<receive_clause> ::= receive from <name>
<project_clause> ::= project <clause> as <identifier> <lcb> <project_list>
[default <colon> <clause>] <rcb>
<project_list> ::= <type> <colon> <clause> [<project_list>]
<any> ::= any<lrb> <expression> <rrb>

9.8 Expressions
<expression> ::= <exp1> {<or> <exp1>}
<exp1> ::= <exp2> {<and> <exp2>}
<exp2> ::= [not_op] <exp3> [<rel_op> <exp3>]
<exp3> ::= <exp4> { <add_op> <exp4> }
<exp4> ::= <exp5> { <mult_op> <exp4> }
<exp5> ::= [add_op] <exp6>
<exp6> ::= <literal> | <lrb> <clause> <rrb> |
 <expression> <lrb> [<clause_list>] <rrb> | //
application
 <name> | <clause_block>
<clause_block> ::= <lcb> <clause_sequence> <rcb>
<name> ::= <identifier> | <dereference>
<dereference> ::= <component_struct_dereference> | <array _dereference>

<component_struct_dereference> ::= <expression> { <dot> <identifier> }
<array_struct_dereference> ::= <expression> <lsb> [<clause_list>] <rsb>

9.9 Literals
<literal> ::= <int_literal> | <real_literal> | <bool_literal> |
 <string_literal> | <byte_literal>
<int_literal> ::= [add_op] digit {digit}
<byte_literal> ::= # [digit {digit}
<real_literal ::= int_literal.{digit}[e <int_literal>]
<bool_literal> ::= true | false
<string_literal> ::= " {<char>} "

9.10 Misc
<assign_op> ::= :=
<add_op> ::= + | -
<and> ::= and
<or> ::= or
<not_op> ::= !
<mult_op> ::= <int_mult_op> | <real_mult_op> | <string_mult_op> |
<int_mult_op> ::= * | / | %
<real_mult_op> ::= * | /
<string_mult_op> ::= ++
<rel_op> ::= <eq_op> | <co_op> |
<eq_op> ::= == | !=
<co_op> ::= < | <= | > | >=
<dotdot> ::= ..
<identifier> ::= <letter> [<id_follow>]
<id_follow> ::= <letter> [<id_follow>] | <digit> [<id_follow>]
<letter> ::= a | b | c | d | e | f | g | h | i | j | k | l | m |
 n | o | p | q | r | s | t | u | v | w | x | y | z |
 A | B | C | D | E | F | G | H | I | J | K | L | M |
 N | O | P | Q | R | S | T | U | V | W | X | Y | Z
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<char> ::= <UTF-8 character> except " and \ | <escape_sequence>
<escape_sequence> ::= \\ | \n | …
<input character> ::= UTF-8 character set

9.11 Index of keywords, literals and predefined names
and
any page 4, section 4.6
as page Error! Bookmark not defined., section Error! Reference
source not found.
behaviour page 7, section 5
bool page 4,section 4.3
byte page 4, section 4.4
component page 7, section 5
connect page 4, section 5; page 10, section 6.6
constructor page , section; page 7, section 5
default in select: page 1, section 6.10; in switch:
disconnect page 4, section 5; page 10, section 6.7
else page 8, section 6.1
enum page 5, section 4.7
except page 12, section 6.11
false page 4, section 4.3
for page 9, section 6.2
from page 11, section 6.9
function page 6, section 4.12
if page 8, section 6.1
integer page 4, section 4.1
interface page 6, section 4.11
new arrays: page , section; components: structs: …
of page 5, section 4.9
on page 10, section 6.8
or page 13, section 7.1
presents page 7, section 5
project page Error! Bookmark not defined., section Error! Reference
source not found.
real page 4, section 4.2
receive page 11, section 6.9
select page11 , section 6.10
send page 10, section 6.8
stop page 7, section 5 more??
string page 4, section 4.5
struct page , section c.f new
switch page , section
to page , section
true page 4, section 4.3
try page 12, section 6.11
type page 5, section 4.8
void page , section
when page 11, section 6.10

10 Appendix B: Type Rules

11 Appendix C: Predefined Environment
Standard functions to be defined

