
High-level abstractions for programming self-managing
wireless sensor network applications

Jonathan Lewis, Alan Dearle
School of Computer Science Technical Report, University of St Andrews, Fife KY16 9SX, Scotland

{jon.lewis, alan.dearle}@st-andrews.ac.uk

Abstract
Wireless sensor networks are complex, distributed

systems whose components are commonly expected to
operate in the face of unforeseen changes to the
environment. Sensor network applications need be self-
aware to be capable of adapting in response to such
changes. We address this requirement with a high-level,
component-based language model and implementation. In
Insense, a sensing system is modelled as a composition of
software components that interact via channels that may be
published to the network and used to identify services
available to other networked components. The language
permits an application to dynamically discover both
network topology and channels that have been published
for inter-node use. Self-configuring application
components are thereby able to search for the service
channels they require and access these by configuring the
channel bindings. Self-healing is supported by an
exception model permitting components to detect channel
communication anomalies and through language
mechanisms permitting applications to be dynamically
reconfigured. We detail aspects of the Insense language
implementation on the TMote Sky platform running
Contiki and present the space requirements for sample
application components. Simulation results are presented
for a sample application to demonstrate its ability to
autonomously configure and self-heal.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organisation]: Computer
Communication Networks – Distributed Systems; D.3.2
[Programming Languages]: Language Classification –
Specialized application languages

General Terms
Design, Languages, Performance.

Keywords: Self-managing, Self-healing, In-network
Service Discovery, Abstraction, Programming.

1. Introduction
Wireless sensor networks may be deployed in

inaccessible locations where frequent administrator visits
are not feasible. As such, these sensing systems are
commonly expected to operate autonomously. Sensor
network applications should thus be self-aware and capable
of monitoring their status and taking actions to adapt and
maintain system functionality in response to unforeseen
changes to the environment.

Application design and implementation for the
resource-constrained architectures commonly used in
WSNs is traditionally very difficult. Developers are
required to write distributed programs for highly resource
constrained devices and deal with memory management
and synchronization issues without high-level software
engineering support. Furthermore, WSN applications must
cater for node failure and unreliable radio communications.

Our main contribution in this paper is to present a high-
level model of distributed sensing in WSNs. The model
supports autonomic configuration of applications through a
service-oriented approach based on inter-component
communication over channels. In this approach, the
components of a sensing system discover and access the
required services by connecting to channels associated with
other components in the network. Self-healing of
applications is supported through an exception model that
permits applications to detect channel communication
anomalies indicating that a service provider is unreliable or
no longer available. Language mechanisms support the
healing process by permitting an application to be
dynamically reconfigured. We present a language model
and implementation to support these abstractions.

Insense [1] is a component-based programming
language which has been developed to facilitate WSN
application development by raising the abstraction level
and thereby reduce the scope for programmer error. An
Insense application is modelled as a composition of active,
stateful components that interact via typed, directional,
synchronous channels. Figure 1 depicts an Insense
application in which a TempSource component instance ts
sends a temperature measurement to a Sink component
instance sink when it receives a timing event from a Ticker
component.

Figure 1. Timed Temperature Acquisition

The activity of the TempSource component is defined
by repeatedly executing the following Insense code
segment
receive tick from ticks
send tempReading() on output

and the activity of the Sink component is defined by
repeatedly executing
receive datum from input
store(datum)

One of the fundamental design principles of Insense is
that the complexity of distributed application design be
bourne by the language implementation rather than by the
programmer. In the example above, the TempSource
component waits for a tick to arrive on its ticks channel
before sending a temperature measurement on its output
channel. Similarly the Sink component waits for a datum to
arrive on its input channel before storing the datum. The
channel construct thereby abstracts over communication
and synchronization.

Communication over channels may also abstract over
radio communication and routing decisions as discussed
briefly below and in more detail in section 3 and section 4.
The source and sink components depicted in Figure 1 may
be located on the same node or on different nodes in the
network and potentially separated by a number of
intermediate nodes without any alteration to their program
code being necessary. Insense thereby promotes the design
of WSN applications comprising components that are
agnostic of their deployment. As a result, a sensing system
may be assembled by composing a number of software
components which were written and compiled prior to their
placement being decided.

Configuration of Insense applications is achieved by
instantiating components and connecting and dissolving
channel bindings. Component channels may be published
to the network with a name that can be used to identify a
service provided by that component. The language permits
an application to dynamically discover both network
topology and channels that have been published for inter-
node use. Self-configuring application components are
thereby able to search for the service channels they require
and access these by configuring the channel bindings.

An exception model permits applications to detect
channel communication anomalies which may result from
unreliable radio links or node failure. Applications may
thus be designed to support distributed self-healing in that
their components may choose to switch service providers
when a service channel is found to be unreliable.

Alternatively, they may report errors to a monitoring
component, which modifies inter-component bindings.

The remainder of the paper is organised as follows:
Section 2 describes related work. The Insense language
model is presented in section 3. Section 4 details some
aspects of our implementation which runs on Contiki [2]
and is tailored towards TMote Sky, a popular WSN node
architecture with 48KB ROM and 10KB RAM. In section
5 we present the space requirements for sample application
components and simulation results to demonstrate
autonomous configuration and self-healing after detecting
node failure. Section 6 contains our conclusions and
outlines further work.

2. Related Work
This section briefly outlines approaches found in the

literature for simplifying WSN application development
and permitting dynamic reconfiguration of applications.

The authors of [3] present the Pleiades language which
is a general purpose language that aims to simplify WSN
application development. Pleiades extends the C language
with constructs that permit developers to design a central
WSN application rather than programs for each node. The
central application is statically decomposed into nesC
components [4] by the compiler. The compiled components
may subsequently linked with the TinyOS library like any
other TinyOS program [5]. Furthermore, the language
permits node-local state to be named and accessed by the
central program after it has been distributed over the
network. As state is shared among both local components
and networked components, coherency issues are to be
expected. As a result, their approach requires locking and
distributed deadlock detection and prevention mechanisms
to guarantee a serial ordering in the face of concurrent
execution.

The authors also present a user-directed concurrent loop
construct which permits the central program to iterate over
nodes in the network and execute the loop body
concurrently on each node. This approach raises the
abstraction level for WSN application development
considerably from what we have observed elsewhere in the
literature. It also appears to produce efficient code.
However, it is not entirely clear how their approach would
lend itself to applications in which different code is to be
executed on a number of network nodes, for example, to
support distributed database queries [6]. It is also unclear to
what extent their approach deals either with unreliable
radio communication or the dynamic reconfiguration of
applications.

Interpreted languages such as TinyScript [7] for the
Mate virtual machine [8] and an implementation of BASIC
[9] based on a small uBasic [10] interpreter that was
developed for Contiki are also gaining recognition in the
WSN community. This may be due to their simplicity and
ability to reduce code size. However, they would appear to

lack the expressibility for programming WSNs. For
example, TinyScript does not provide support for multi-
hop or unreliable radio transmissions and BASIC, in our
experience, does not lend itself well to engineering
complex applications. Our aim is to simplify application
development by abstracting over low-level concerns while
permitting the design of complex WSN applications.

Support for dynamic reconfiguration of WSN
applications is, in our experience, not common place in the
WSN community and provided at the operating system
level rather than at the language level, if at all. Approaches
in the literature centre on permitting program code to be
replaced at runtime. A node’s entire system image may be
swapped for another [11] or smaller chunks of object code
may be loaded dynamically either from a node’s non-
volatile store or after receiving it from the radio [12]. As
sending system images or object code by radio may be
costly in terms of energy consumption, some researchers
promote the use of virtual machines and language
interpreters to reduce code size and thereby aid
reconfiguration by over-the-air programming [13][14].
While code replacement enables an application to be
altered entirely, in this paper we focus on performing
adaptation at the language level that is analogous to re-
wiring a set of system components. However, the two
approaches are complimentary.

3. Insense Language Model
In the following we present the model of the Insense

language which is designed to abstract over the
complexities of memory management, concurrency control,
synchronisation, radio communication, routing decisions,
and aims to decouple applications from the operating
system and hardware.

3.1 Components and Procedures
Components are the unit of concurrent execution and

the basic building blocks of Insense applications thus
promoting a strong cohesion between the architectural
description of a system and its implementation.
Components are stateful, strongly encapsulated, and single
threaded in order to prevent accidental race conditions.
That is, components may contain updateable locations
which can only be altered by the locus of control associated
with a particular component instance.

The activity of a component is defined by its behaviour
which is specified in a syntactic construct of the same
name. A component’s behaviour may be likened to a loop
which starts to execute immediately after a component has
been instantiated and continues until it is stopped either by
the component itself or by some other component.
Component instances are created by calling one of the
component’s constructors. Components may instantiate
other components and alter the connection bindings
between such components.

component TempSource presents ITempSource {
 constructor() {}
 behaviour {
 receive tick from ticks
 send tempReading() on output
 }
}

Figure 2. Temperature Source Component
The type of a component is represented by the set of

channels (described in section 3.3) that it presents in its
interface definition. The definition of the TempSource
component depicted in Figure 1 is shown in Figure 2. The
second line in the behaviour loop sends the result of calling
the tempReading() procedure on its output channel. The
tempReading() procedure is an example of a global
procedure which, in this case, is provided by the runtime
system as part of a standard library. Procedures may take
any number of parameters and return a single value. In
order to be able to determine an upper limit for the memory
usage of programs, recursion is not permitted in Insense.

The interface for the component in Figure 2 may be
defined as
type ITempSource is interface(
 in bool ticks ;
 out real output
)

and an instance of the component may be created by
executing
ts = new TempSource()

3.2 Types
The language supports the following basic types:

boolean, byte, integer, and real. An enumeration type enum
and an immutable string type are also provided. The
language supports the following constructed types:
components, interfaces, structured record types, and arrays.
Examples of component and interface declarations have
been shown above. A structured record definition is shown
in section 3.5.3 below. To statically determine memory
requirements and simplify memory management, records
may not contain other record types or references. The lack
of pointers in records combined with shallow-copying
when sending records over channels enforces the strong
encapsulation of component locations described above.

Insense also supports an infinite union type called any
[15]. Arbitrary values may be injected into the type any and
a project operation permits values to be extracted. Arrays
are the only collection type supported by the language and
these must be initialized on declaration and their size must
be defined using a literal to enable the required memory to
be determined statically.

3.3 Channels
Channels are typed, directional, and synchronous. The

type of a channel is defined by its direction, either in or
out, and the type of its payload. Apart from component
instances, all values in the language can be transferred over

channels of the appropriate type, including channels
themselves. Arbitrary values can be sent on a channel by
specifying the channel payload type to be any.

Attempting to send a datum on an unconnected channel
results in the caller blocking until the datum has been sent
to a connected receiver. Similarly, attempting to receive
from an unconnected channel causes the caller to block
until data can be received. These simple rules permit
components to be dynamically re-wired without the need
for complex synchronisation mechanisms. Thus, the
semantics of the channel abstraction in Insense is akin to
that of π-calculus [16].

Insense provides operations to connect and disconnect
channels and to send and receive data on them. Assuming
the existence of sink, an instance of the Sink component
from Figure 1, we may connect ts, the TempSource
component instance, to the sink as follows
connect ts.output to sink.input

Disconnection of the sink’s input channel from all channels
to which it is connected is achieved by
disconnect sink.input

The use of send and receive is illustrated in the behaviour
loop in Figure 2 above. As the operations are synchronous
the TempSource component in Figure 2 will block until it
receives a tick on its ticks channel and will block until the
datum sent in the send clause has been received by another
component before continuing to execute its behaviour loop.
Channels are thus used to abstract over both
communication and synchronisation.

So far we have only considered the case where a
channel is used to connect two component instances
together. Insense permits a single channel to connect
multiple component instances together. For example, a
channel may be used to connect two source components to
a single sink. This scenario is depicted in Figure 3 (a) in
which two TempSource component instances ts1 and ts2
are both connected to the input channel of the sink
component instance. While the semantics of sending and
receiving data on one-one channels is deterministic, non-
determinism is introduced for channels which connect
multiple component instances. The sink component in
Figure 3 (a) may receive a datum on its input channel from
either one of the two sources ts1 and ts2. The order in
which data are received from these sources depends on
their scheduling and it is not possible to determine the
sender at the sink.

Figure 3 (b) depicts the scenario where a single source
output channel is connected to multiple sinks. When ts
sends a datum on its output channel it is received by one of
the two sink components. If, for example, sink1 is ready to
receive a datum while sink2 is not then the datum will be
sent to sink1. If both sinks are ready to receive data then a
fair decision is made. If neither sink is ready to receive then
the source will block until one sink is ready to receive.
The combination of one-many and many-one connection

(a)

sink : Sink

ts2 : TempSource

out real output

in bool ticks

ts1 : TempSource

in real input

out real output

in bool ticks

sink2 : Sink

ts : TempSource

out real outputin bool ticks

sink1 : Sink

in real input

in real input

(b)
Figure 3. Many-one and one-many channel connection

patterns permits complex connection topologies to be
specified in Insense.

Sometimes it is necessary to non-deterministically
receive a value from one of a number of input channels.
For example, a sink component may be required to receive
different types of data from input channels connected to
different sources. For this purpose, Insense provides a
guarded, multi-channel select statement. The select
operation tries to receive from a member of a set of input
channels for which the guard conditions are met and input
is available and executes a code block associated with that
selection. An optional default clause is provided which
permits the caller to continue execution even if no input is
available or the guard conditions are not met.

A more detailed explanation of Insense channels, their
semantics and of the non-deterministic select operation can
be found in [1] and the correctness of the channel
implementation for intra-node communication with respect
to the desired semantics is demonstrated in [17].

3.4 Hardware Access
Access to parts of the hardware is provided through a

combination of pre-defined components and procedures.
The tempReading() procedure called from the behaviour in
Figure 2 returns a temperature reading to the caller. The
Ticker component provides access to the system clock and
can be instructed to send ticks on specific channels at
particular intervals. The following procedure call would be
used to arrange ticks to be sent to the ticks channel
associated with the TempSource component instance ts
every 10 seconds.
periodicEnSchedule(ts.ticks, 10.0)

3.5 Inter-node Channels
In addition to intra-node inter-component

communication, Insense permits channels to be used for
inter-component communication when components are
located on different nodes in the network. When used in
this manner they can abstract over data marshalling and
multi-hop radio communication primitives and support a
channel-based, service-oriented model of distributed
sensing in WSNs. This model promotes the design of
deployment agnostic code and supports self-configuring
and self-healing applications. Just as with intra-node
channels, all values in the language apart from components
can be sent on inter-node channels of the appropriate type
including channels themselves. Attempting to send or

receive on unbound inter-node channels results in the caller
blocking until a connection is established.

3.5.1 Exposure
Inter-node channels may be likened to services which

can be dynamically discovered and accessed by
configuring component connections to them. Specifically,
channels can be exposed to the network using a publish
operation. An example of the publish operation is shown
below in which an incoming channel called input
associated with a component instance sink is made visible
to networked components.
publish sink.input as "sink"

The channel is associated with the string "sink", which we
term the local channel name (LCN), and is made public to
the network along with its associated channel direction and
payload type. The LCN "sink" may be seen to represent a
sink service that is provided to components executing on
network nodes and accepts values of type real in this case.
The LCN is required to be unique to a node and an error
will result if the name "sink" has already been used locally
to denote a public channel. LCNs are not required to be
globally unique across a set of nodes. That is, multiple
nodes may make channels globally accessible using the
same name.

3.5.2 Binding
To utilise a channel published using a LCN, nodes may

make use of an extended version of the already familiar
connect operation. The connect operation is extended to
permit either of the two channel end-points to be specified
as a (node-address, LCN) pair. The disconnect operation is
extended similarly. We illustrate the use of the extended
connect operation in an example in which there are two
nodes with radio addresses A and B. The input channel
associated with a sink component instance on node B is
published with the LCN "sink" using the publish operation
as outlined above. Node A contains a TempSource
component instance ts. The two component channels may
be bound together by executing the following on node A.
connect ts.output to "sink" on B

Once a connection has been established any output written
on the channel ts.output on node A will be transmitted
via the radio for delivery to the input channel associated
with the LCN "sink" on node B.

Channel bindings may be manipulated from any node in
the network. If the following were executed on node A
publish ts.output as "tempSource"

then a binding between the TempSource and Sink
components may be established from any node in the
network by executing
connect "tempSource" on A to "sink" on B

Inter-node channel bindings are dissolved using the
disconnect operation.

The inter-node channel model thereby supports remote
configuration and reconfiguration of WSN applications by

permitting the wiring between components to be adapted at
runtime even when components are distributed over a
network of nodes.

3.5.3 Discovery
In order to support self-configuration in WSNs an

application must be able to discover information about the
network during its deployed lifetime. Two operations are
provided to permit nodes to discover the addresses of
neighbouring nodes. The first operation
Address[] getNeighbours()

returns an array of addresses representing the direct
neighbours of the node executing the operation. The
Address type is declared as a byte array in the language and
represents the address type used under Contiki. The second
operation
Address[] getNeighboursOf(Address node)

discovers the addresses of direct neighbours for the
specified node. Insense also provides an operation to
determine the caller’s node address
Address getNodeAddress()

and an operation to determine the minimum hop distance
between two nodes specified by their addresses
integer getNumberHops(Address src,Address dest)

The latter operation returns the value -1 when no route
between the specified nodes can be found. Programs may
use these operations to discover information about network
topology.

The two following operations permit application
components to discover channels that have been published
for inter-node communication by particular nodes. The two
operations
PublicChannel[] getPublicChannels()
PublicChannel[] getPublicChannelsOf(Address a)

return an array of structs representing the channels
published by this node and the specified node respectively.
The public channel type is declared as
type PublicChannel is struct (
 Address address ;
 ChannelDirection direction ;
 string typerep ;
 string LCN
)

where the channel direction is an enumeration type given
by
type ChannelDirection is enum (Out, In, Either)

and the typerep element is a human readable string
representation of the channel’s payload type. The language
provides a typerepof operator which produces the string
representation for any given value in the language. For
example, if we declared a variable temp as
temp = 21.0

then the following operation would declare a string s and
initialise it with the value “r”, the string representation for
the type real.
s = typerepof temp

The last discovery operation
Address[] findNodesPublishing(
 ChannelDirection dir ,
 string typerep ,
 string LCN
)

combines the functionality of the other channel operations
and returns a collection of addresses of nodes that have
published a channel with the given LCN, direction, and
payload type. If a LCN, direction, and type descriptor are
used by the programmer to indicate a particular network
service then the findNodesPublishing operation may be
seen to permit the discovery of such services in the
network. The implementation of findNodesPublishing also
supports some degree of wild-carding which we intend to
extend in the future to permit arbitrary service queries to be
constructed. All the above operations which return an array
value return a zero-length array in the case of failure.

We demonstrate the use of in-network service
discovery with an example in which a TempSource
component (as shown in Figure 2) is bound to a remote
Sink component (as shown in Figure 5) by a third
TempBinder component (as shown in Figure 6).

The configured application is depicted in Figure 4. The
Sink component definition for node B, its instantiation and
channel exposure are shown in Figure 5. The sink
repeatedly waits for a datum to be sent to its input channel
and prints the datum to the serial port using a polymorphic
print procedure, printAny. In order to permit remote
components to discover and connect to its input channel,
the channel is published to the network and associated with
the LCN “sink”. The definition, instantiation, and en-
scheduling of the TempBinder component are shown in
Figure 6. The TempBinder constructs a local TempSource
component instance and initialises its ts location with that
instance. Due to strong encapsulation in components, the
TempSource component is not visible from outside its
creator. It follows that any binding and en-scheduling of
the child component must be performed by the parent. To
this end, the TempSource component’s tick schedule is set
by the TempBinder component in the constructor. The tick
schedule for the TempBinder component is set after its
construction in the main sequence.

Figure 4. Self-configuring Application

type ISink is interface(in real input)

component Sink presents ISink {
 constructor() {}
 behaviour {
 receive data from input
 printAny(any("sink got reading "))
 printAny(any(data)) // log receipt of data
 }
}

sink = new Sink()
publish sink.input as "sink"

Figure 5. Passive Sink Component
type ITempBinder is interface(in bool ticks)

component TempBinder presents ITempBinder{
 ts = new TempSource()

 constructor(){
 periodicEnSchedule(ts.ticks, 60.0)
 }

 behaviour {
 receive tick from ticks //wait for schedule
 sinks = findNodesPublishing(In,"r","sink")
 if sinks.length > 0 then {// we found sinks
 // bind source to fist sink
 connect ts.output to "sink" on sinks[0]
 stop
 }
 }
}
tb = new TempBinder()
periodicEnSchedule(tb.ticks, 120.0)

Figure 6. TempBinder Program
The activity of the TempBinder component may be

described as follows. After creation, the component waits
for a tick to be received prior to searching for sink service
providers in the network using the findNodesPublishing
operation. Specifically, the component searches for
networked components exporting an incoming channel
with the LCN “sink” of payload type real (denoted by the
string representation “r”). If no sinks are found then the
next iteration of the behaviour loop is executed. The
component is thereby able to periodically repeat its search
until it finds a sink. If one or more sinks are found then the
component connects its local TempSource component to
the first sink in the list and stops. Meanwhile, the
TempSource component is now connected and able to send
temperature readings to the sink over the inter-node
channel connection established by its parent.

The inter-node channel connecting the source to the
sink abstracts over any multi-hop routing that may be
necessary to establish and use the connection. That is, there
may be any number of intermediate network nodes between
the source and the sink which route both data as well as
service requests and responses to their respective
destinations.

3.5.4 Exception Model
The exception model in Insense permits applications to

detect failing connections and deal with uncertainties while

establishing remote bindings and communicating over
inter-node channels. Specifically, components can be
designed to detect whether a channel operation has either
succeeded, failed, or whether the outcome of the operation
is unknown. For this purpose, Insense defines a fixed
number of exceptions that may be thrown when operating
on inter-node channels.

Four inter-node channel operations may throw
exceptions in Insense. First, the publish operation throws
the exception DuplicateLCNException when the specified
LCN is already in use on the node executing the publish
operation. Second, the connect operation throws the
exceptions:

• ChannelsUnknownException when a channel name
cannot be found on a remote node;

• IncompatibleChannelsException when the channel
types are incompatible;

• NodesUnreachableException when a route from the
caller to one or more nodes hosting the public
channels cannot be found;

• BindStatusUnknownException when routes to the
destinations are found, but confirmations of the
channel binding status are not received.

Third, the exceptions NodesUnreachableException and
BindStatusUnknownException may be thrown by the
disconnect operation with the same semantic interpretation
as for the connect operation. Finally, the send operation
may throw the following exceptions when sending on an
output channel:

• NodesUnreachableException when no routes to the
destination channels can be found – the output
channel is implicitly disconnected from all inputs;

• SendStatusUnknownException when a route can be
found, and a datum is sent, but a confirmation is not
received from the remote node.

Insense permits programmers to define exception
handlers to handle particular exceptions. The language
supports a try-except clause that is similar to the try-catch
clause in Java. In contrast to exception handling in Java,
the occurrence of exceptions in Insense programs is
ignored unless the operation is within a try-block. That is,
execution is allowed to continue optimistically even when
one of the exceptions above occurs. Thus, for example,
when knowledge of channel connectivity and reliable data
transfer from one component to another is not required the
programmer may simply choose to omit a try-except clause
for the relevant send operation. In Insense, a try-block must
be followed by at least one matching except-block. When
an exception is thrown by an operation in a try-block
execution immediately jumps to the matching except-block

or to the instruction following the last except-block when
no matching exception handler is defined.

The use of try and except is illustrated in Figure 7
which depicts a variation of the example from Figure 4
above in which an error channel connects the TempSource
to the TempBinder on node A. A second sink component
instance is also deployed on node C. The definition of the
TempSource component and its interface is shown in
Figure 8. The TempSource component in Figure 8 only
differs slightly from the one shown in Figure 2. First,
tracing information has been added which is later used to
illustrate a Cooja simulation. The major difference is that it
uses a try-except clause to catch exceptions when
attempting to send a datum to the sink. The component is
thereby capable of sending a notification on its error
channel when it detects that its link to the sink is broken as
indicated by the NodesUnreachableException. The
exception SendStatusUnknownException is only used for
trace purposes meaning that occasional data loss is ignored.
The application components could trivially be adapted to
permit data to be resent in the event of the exception
SendStatusUnknownException if a greater reliability were
required.

Node A

Ticker

ts : TempSource out real outputin bool ticks

tb : TempBinder

In bool ticksin bool ticks

in bool error

binds

out bool error

Node C

sink : Sinkin real input

Inter-node channel

Broken Link
Node B

sink : Sinkin real input

Figure 7. A Self-healing Application

type ITempSource is interface(
 in bool ticks ;
 out real output ;
 out bool error
)

component TempSource presents ITempSource {
 constructor() {}
 behaviour {
 receive tick from ticks
 try {
 send tempReading() on output
 printAny(any("ts: send ok"))
 } except NodesUnreachableException {
 printAny(any("ts: send unreachable"))
 send true on error
 } except SendStatusUnknownException {
 printAny(any("ts: send unknown"))
 }
 }
}

Figure 8. Detection of Broken Links

type ITempBinder is interface(
 in bool ticks ;
 in bool error
)

component TempBinder presents ITempBinder{
 ts = new TempSource()

 constructor(){
 periodicEnSchedule(ts.ticks, 60.0)
 connect ts.error to error
 }
 behaviour {
 receive tick from ticks
 sinks = findNodesPublishing(In,"r","sink")
 for i = 0 .. sinks.length-1 do {
 try {
 // try to bind the source to a sink
 connect ts.output to "sink" on sinks[i]
 printAny(any("tb: bound"))
 // bind succeeded, wait for error
 receive oops from error
 printAny(any("tb: link broken"))
 } except NodesUnreachableException {
 printAny(any("tb: connect failed"))
 // connect has failed, try next sink
 } except BindStatusUnknownException {
 printAny(any("tb: connect unknown"))
 // may be bound, still try next sink
 }
 printAny(any("tb: try next sink"))
 }
 }
}
tb = new TempBinder()
periodicEnSchedule(tb.ticks, 120.0)

Figure 9. Reliable Binding and Self-healing
The TempBinder component in Figure 9 differs in three

aspects from the one in Figure 6. Similarly to Figure 8,
trace information has been added to the code. Secondly, the
component iterates over the sinks array in its behaviour and
tries to connect its TempSource component to a sink
reliably.

If the status of the connect operation is reported as
having failed or as unknown, the component tries to
connect to the next sink in its sinks array. Lastly, when an
inter-node binding to a sink is established the component
no longer stops its behaviour. Instead, it waits for an error
signal from the TempSource component signifying that the
inter-node connection has been lost. If such an error signal
is received, the component tries to re-establish a connection
to a different sink, starting with any untried sinks in the
array. If the component is unsuccessful in binding to these
cached sinks, the behaviour loop resumes and initiates a
new service discovery and binding phase.

The use of exceptions in combination with service
discovery and binding mechanisms may thereby be seen to
support self-configuration and self-healing.

3.5.5 Semantic Differences
There are necessarily some differences in the semantics

of sending on inter-node channels as opposed to intra-node
channels. First, nodes may fail, be rebooted, and radio links
may be unreliable or lost completely causing inter-node

channels to fail. As a consequence messages may not be
delivered to the intended receiver. In such cases an
exception is thrown to the sender in order to permit
applications to deal with failures of communication links.

A second difference is in inter-node channels connected
to multiple inputs. The runtime system attempts to send the
datum to each connected input channel in succession until
it receives a message to confirm receipt (an ACK message)
from a receiver. As one or more ACKs may be lost the
datum may be received by multiple remote components.

3.5.6 Deployment Agnostic Code
The inter-node channel abstraction in Insense enables

the composition of WSN applications from deployment-
agnostic components. The agnosticism pertains to their
design which does not require knowledge of their
deployment at compile time. That is, Insense components
may be designed much like the Sink and TempSource
components, shown in Figures 5 and 8 respectively, such
that they cater for both intra-node and inter-node
communication during their deployment. Published
channels may be used both locally and remotely.
Consequently, the TempBinder component from Figure 9
could be deployed on the same node as the Sink component
without requiring any alteration to the program code.

The three main benefits of such deployment
agnosticism are as follows. First, the programmer can focus
on higher level component logic and their interaction with
other components rather than on component placement.
Second, some facets of an application can initially be tested
on a single node prior to being distributed over multiple
nodes. Third, components may be compiled prior to their
placement being decided. Insense thereby enables the
composition of WSN applications from pre-defined and
pre-compiled (as well as tailor-made) components. We
envisage the future construction of software engineering
tools for graphical composition of WSN applications by
tailoring the instantiation, scheduling, placement, and
wiring of pre-defined and pre-compiled components.

4. Implementation
In this section we focus on the inter-node channel

implementation although parts of the implementation
described in [1] and [17] are briefly presented for the
reader’s convenience.

The Insense compiler is written in Java and generates C
source code that can be compiled and linked with the
runtime system library and operating system. The code
generation module is currently tailored towards the Contiki
platform. The compiler generates main.h and main.c files
containing the C code for global Insense definitions
including procedures declared outwith components and
globally defined types as well as the main sequence. The
latter typically contains code to construct component
instances and bind these together.

4.1 Components Structs and Channels
The compiler generates a source and header file for

each component and struct declaration. When the
programmer declares a component type the compiler
generates a correpsonding C struct with members for
component fields, channels, and variables and a pointer to a
table of function pointers. This table contains a reference to
the component’s behaviour function and to functions that
provide access to its component channels. The compiler
also generates code for the component constructors and
local procedures. Component constructors, procedures, and
behaviour are implemented as Contiki processes so as to
permit them to execute blocking calls resulting from
sending and receiving data on channels. These processes
each have an associated frame which is dynamically
allocated on the heap when the process begins and which is
used to store their state. The frame is destroyed when the
process ends.

Insense structs are represented by C structs in the
implementation with appropriate constructor and copy
functions, the latter being used to support a pass-by-value
scheme when sending structs over channels.

Every channel in the language is represented by a half-
channel object in the implementation. Half-channel objects
contain a number of fields as outlined in [17], including a
list representing connections to other half-channels.

4.2 Memory Management
Our implementation makes use of dynamic memory

allocation and a reference counting garbage collection
scheme. Reference-counting garbage collection is suitable
for Insense due to its simplicity and because Insense does
not permit circular references. In our implementation a
reference count and pointer to a destructor is stored along
with every dynamically allocated object and called when
the reference count reaches zero. The compiler generates a
destructor for every dynamically constructed type in the
language.

4.3 Inter-node Channels
The inter-node channel implementation comprises two

main modules in the runtime library, neither of which are
visible to an Insense programmer: 1) a radio module and 2)
an inter-node channel handler (INCH) module. The INCH
module provides support for all inter-node, inter-
component operations. The radio module is designed to
provide radio functionality to the INCH module and
supports data transfer using single-hop, best-effort, unicast
and best-effort, local area broadcast. The Radio module
and the INCH module are described in more detail below.

4.3.1 Radio Module
The radio module is modelled as a composition of two

Insense components, a RadioIn component and a RadioOut
component as depicted in Figure 10.

The RadioOut component presents an interface
containing a single incoming send channel and the RadioIn
component presents an interface containing an outgoing
receive channel. Both components use the Unicast and
Indentified Broadcast layers in the Rime stack [18] as
provided under Contiki. The RadioIn channel carries data
of type RadioPacket which contains two fields: the
destination address, and data encoded as an Insense any
type.

The code necessary for the marshalling and un-
marshalling of data is the responsibility of the Insense
compiler which analyses the program and generates the
appropriate functions. Pointers to these functions are stored
in a map indexed by a type descriptor. When a datum is
sent on an inter-node channel the appropriate serialisation
function is called prior to transmission. When data is
received from the radio the appropriate de-serialisation
function is called after examining the type information in
the payload.

Data is sent over the radio using the Rime unicast
primitive if the address field contains a valid unicast
destination address or it is broadcast if the field contains a
zero-length array (our equivalent of a broadcast address).
The RadioIn component receives notification of incoming
radio messages via a call-back function that is registered
with the Rime implementation. Once notified the
component deserialises the message data and constructs a
RadioPacket datum with the address field set to the source
of the transmission. The packet data is then sent on the
component’s outgoing receive channel to the INCH.

4.3.2 Inter-node Channel Handler
The INCH component presents two sets of interfaces, one
set to the radio module over which it abstracts, the other to
provide inter-node channel services to the components
running on a node. The first set contains incoming
and outgoing channels on which data may be sent to and
received from the radio as described in Section 4.3.1. The
second is more complex and offers channels for the
management and operation of:

1. Scheduling ticks;
2. Requests for connecting and disconnecting

channels, and discovery operations, and;
3. Inter node, inter-component messages.

Figure 10. Radio and INCH Components

The ticks channel is used to schedule the dissemination
of routing information to the network and is discussed in
more detail in section 4.3.7. Requests for connect,
disconnect, and channel discovery operations are made on
the connection_change and channel_query channels shown
in Figure 10. Finally, inter node, inter-component messages
are sent and received on a set of channels called the
local_component_channels set which contains channels
that are connected to local components as the result of a
connect operation. The local_component_channels set in
Figure 10 is empty representing a scenario in which no
publish and connect operations have taken place.

The INCH module is modelled as a single Insense
component. The component performs a guarded, multi-
channel select operation in its behaviour loop and then
invokes the appropriate code block depending on the
receiving channel. The channels from which INCH
attempts to receive are: connection_change,
channel_query, radio_in, ticks, and all incoming channels
in the local_component_channels set.

4.3.3 Channel Exposure
As described in section 3.5.1 channels are exposed

using the publish operation. To record such channels, each
INCH maintains a public channels table containing local
channel names, their direction, type and channel identifier
which uniquely identifies local channels. This table is used
whenever connection requests are made and when queries
such as getPublicChannels or findNodesPublishing are
performed. To illustrate its use, consider the scenario in
Figure 11 in which a Receiver component has been
declared and instantiated on node B as follows
r = new Receiver()

and its input channel has been published for inter-node use
with the LCN “Recv” by executing
publish r.input as "Recv"

When the publish operation is executed, the INCH
component examines its public channels table and throws
an exception if the specified LCN is already in use. If the
LCN is not in use it constructs a new channel and enters
into its local_component_channels set after connecting it to
the supplied component channel. The INCH then enters the
new information into its public channels table.

4.3.4 Channel Binding
The INCH also maintains a Bindings table, which

records inter-node, inter-channel connections. This table
contains four fields: two node addresses and two local
channel names. Entries in this table are created, whenever
an inter-node connection is created and removed when a
binding is dissolved.

Figure 11 depicts the scenario in which a component
channel (of type out real) on node A is connected to a
public incoming channel with the LCN “Recv” on node B
(of type in real).

When the local INCH component receives the bind
request as a result of the connect operation, it forwards that
request via its radio to the remote INCH on node B with a
message containing the four fields required to create an
entry in node B’s Bindings table.

Upon receipt of the request from the radio_in channel
and, after finding the incoming channel with LCN “Recv”
in its public channels table and creating a new binding in
its Bindings table, the remote INCH sends an
acknowledgment message to node A. Node A’s radio
component forwards the acknowledgement to node A’s
INCH component upon which it adds a new channel to its
local_component_channels set and creates a new entry in
its Bindings table.

Inter-node channel bindings are dissolved in a similar
way by sending unbind requests instead of bind requests to
the relevant INCH components.

Requests for connection change and the corresponding
acknowledgment messages may be lost when transmitted
by radio. The INCH propagates exceptions to the callers of
connect and disconnect operations unless appropriate
acknowledgements have been received. Since an
application may choose to repeatedly execute connect and
disconnect operations until no exceptions occur, the
operations are idem-potent and the INCH sends an
acknowledgement when it receives requests to connect an
already connected channel or disconnect a channel that is
not connected.

Node B

r : Receiver

Ticker

2

INCH

Bindings
SAddr SChan RAddr RChan

A “1” B “Recv”

Public Channels
Chan LCN DIR typerep

2 "Recv" In "r"

Node A

s : Sender

Ticker

1 Bindings
SAddr SChan RAddr RChan

A “1” B “Recv”

B
in

d
re

qu
es

t A
:1

 to
 B

:R
ec

v

B
in

d
A

C
K

out real output

in real input

s = new Sender()

connect s.output to
"Recv" on B

r = new Receiver()

publish r.input as "Recv"

RadioIn

RadioOut

RadioIn

RadioOut

B
in

d
B

in
d

A
C

K

B
in

d
R

eq
ue

st
A

C
K

Bind

INCH

Public Channels
Chan LCN DIR typerep

connection_change

Figure 11. Channel Exposure and Binding

4.3.5 Sending Data
As described above, the INCH repeatedly performs a

non deterministic select on all outgoing channels from its
local_component_channels set each of which is connected
to an internal component channel. When a datum is
received from a component, the INCH iterates over the
bindings for this channel in its Bindings table and attempts
to send the datum to the appropriate destination node and
channel. The INCH registers success once an
acknowledgement is received from the corresponding
INCH. Alternatively, the INCH registers failure by
propagating an exception to the sending component if an
acknowledgment is not received.

4.3.6 Remote Synchronisation
With intra-node, inter-component communication, the

communicating parties handshake and exchange data
contemporaneously. Such instantaneous synchronisation is
not possible with inter-node and potentially multi-hop
synchronisation. A mechanism is therefore required that
permits a component to synchronise with a remote
component via the INCH proxy components when
communicating over inter-node channels. Consequently the
implementation of outgoing channels associated with the
INCH delay handshaking until either a timeout or
acknowledgement have been received. If an
acknowledgement is received the remote INCH has
delivered the datum to the remote component and the
handshake completes releasing the blocked sending
process. Otherwise, if the timer expires
prior to an acknowledgement being received, a
SendStatusUnknownException event is propagated to the
sender.

4.3.7 LSA-based Multi-hop Routing
The inter-node channel implementation incorporates

multi-hop routing of data packets on minimum hop paths.
Dynamic discovery of routing information is based on link-
state advertisement (LSA) [19]. We chose an LSA-based
approach over alternatives such as AODV [20] since
communication links may not always be bi-directional.

In our implementation time-stamped link-state
information is periodically disseminated to the network by
the INCH components using Rime’s Identified Broadcast
primitive. The INCH components update their map when
newer information is received from the network. Link-
failure on an incoming link is recorded when link-state
broadcasts are not received from the corresponding
neighbour over a certain number of link-state cycles (in the
current implementation 10).

The frequency with which link-state is disseminated is
set once and remains fixed, at twice per minute, in our
current implementation. However, a minor change would
permit the dissemination frequency to be dynamically
adapted in response to apparent stability or changes in
network topology. For example, the frequency may be

reduced to conserve energy when the network topology
appears to be stable at the expense of increasing the
network’s response time to link failure. When new
topology information is detected, the dissemination
frequency may be increased to support fast dissemination
of the information to the network.

Whenever an INCH component sends data to another
node, it uses Dijkstra’s algorithm [21] to search its link-
state map to find the next hop in a minimum hop path to
the destination and sends the data to the next hop. INCH
components along the minimum hop path examine a
packet’s destination address and forward the packet to the
next hop in the network until it arrives at its final
destination. The packet payload is only de-serialised by the
INCH on the destination node. That way, only the source
and final destination nodes for any transmission require the
marshalling code for the packet payload.

When a route to the destination node cannot be found
according to a node’s link-state map, this information is
propagated to the sending process via a
NodesUnreachableException value as described in section
3.5.4 above.

4.3.8 Discovery Mechanisms
The getNeighbours and getNeighboursOf operations

return an array of addresses representing nodes for which
the node in question either has an incoming or outgoing
direct link according to the local INCH component’s link-
state map. The operation getNumberHops returns the
length of the minimum hop path obtained through
searching the link-state map for the given source and
destination nodes.

The getPublicChannels operation returns the content of
this node’s Public Channels table stored in the local INCH.
Executing the getPublicChannelsOf operation causes the
INCH to send a suitable channel query to a remote INCH
component and report the returned results or an empty
array if no results were obtained.

Finally, executing the findNodesPublishing operation
causes the INCH component to send a suitable query for
the specified public channel to all reachable nodes and
report the addresses of nodes which made suitable replies.

5. Application Simulation
In the following we illustrate the capability for Insense

applications to autonomously configure and self-heal using
a simulation.

5.1 Deployment
A sample deployment of the components shown in

Figure 7 is simulated using Cooja (the Contiki Os Java
simulator) [22]. That is, the application components are
compiled down to executable MSP430 code and linked
with a Contiki system image and the Insense runtime
library for the TMote Sky platform. The executable system

Figure 12. Node Deployment

images are then associated with simulated TMote Sky
nodes running on the Cooja simulator. The sample
application deployment is shown in Figure 12.

Instances of the Sink component (shown in Figure 5)
are deployed on nodes 1 and 2. An instance of the
TempBinder component (from Figure 9) along with its
associated TempSource component (from Figure 8) is
deployed on node 3. The spacing between nodes 1, 2, and 3
is such that intermediate nodes 4 and 5 are necessary to
route both application data and data resulting from
discovery and connect operations between the nodes.
Nodes 4 and 5 do not contain any user-defined Insense
components. Instead, they contain runtime components,
including the Radio and INCH components discussed in
sections 4.3.1 and 4.3.2 respectively, which are necessary
to support the application’s inter-node channel
communication.

5.2 Application and System Settings
The TempBinder component is scheduled to conduct a

search for sinks every two minutes (specified by the call to
periodicEnSchedule) when the TempSource component is
not connected. When connected, the TempSource
component is set to take a temperature measurements every
minute (as specified in the constructor in Figure 9) and
send the measurements to the sink.

As described above, the INCH component is en-
scheduled to disseminate link-state to the network twice a
minute and the component’s counter for detecting failed
links is set to 10. An incoming link from node N will thus
be deemed to have failed when no link-state advertisement
is received from node N in 10 cycles, i.e. 5 minutes.

5.3 Self-configuration and Self-healing
In the simulation, the nodes establish a common view of
the network topology after 5 minutes. When the
TempBinder component next runs after the network
becomes stable, it successfully discovers the “sink” channel
exported by the sink on node 2. In this particular example
the TempBinder does not discover the “sink” channel
exported by the sink on node 1 (as it does not receive an
acknowledgement). The TempBinder connects the
TempSource component on node 3 to the sink instance on
node 2, thereby completing the application configuration.

TIME:375774 ID:3 tb: bound
TIME:378578 ID:2 sink got reading 24.00
TIME:379280 ID:3 ts: send ok
<node 5 removed>
TIME:428757 ID:3 ts: send unknown
TIME:488342 ID:3 ts: send unknown
TIME:548736 ID:3 ts: send unknown
TIME:608663 ID:3 ts: send unknown
TIME:665047 ID:3 ts: send unreachable
TIME:665050 ID:3 tb: link broken
TIME:665052 ID:3 tb: try next sink
TIME:857628 ID:3 tb: bound
TIME:857692 ID:1 sink got reading 24.00
TIME:858196 ID:3 ts: send ok

Figure 13. Cooja Log File
Figure 13 is an extract of the log file produced by Cooja

and shows the simulation time in milliseconds, the node
number, and the output on the serial line (from the
PrintAny statements) for all nodes in the network. After the
TempBinder component instance tb establishes the inter-
node channel connection, the sink instance on node 2 may
be seen to receive a simulated temperature reading of 24.00
degrees Celsius. The synchronisation between the source
and the sink may be observed in that the TempSource
component instance ts reports success after the datum is
received by the sink instance.

At time 379280, we have forcibly removed node 5 so
that the TempSource on node 3 is no longer connected to
the sink on node 2. The log in Figure 13 shows that no
more readings are received by the sink on node 2 after the
node is removed. Following the removal of node 5, the
sending component on node 3 receives
SendStatusUnknownException exceptions which causes the
component to write “send unknown” messages to the log.
After 5 minutes, the INCH throws the exception
NodesUnreachableException to the TempSource instance ts
at which point it sends a message on its error channel.

Finally, on receipt of the error notification, the
TempBinder unblocks from the receive oops statement and,
having reached the end of the for-loop, executes the next
iteration of its behaviour loop. A connection to the sink on
node 1 is re-established after the next discovery phase
completes. Following reconnection, the log shows the sink
on node 1 has successfully received a temperature reading.

5.4 Space Requirements
The space requirements of the application components

used in the simulation are as follows. The code size for the
Sink component is 800 bytes and each instance uses 64
bytes of RAM, the code size for the TempBinder is 1748
bytes and 104 bytes of RAM are required, and the code
size for the TempSource component is 1150 bytes and 118
bytes of RAM are required. The sizes of the Insense
Runtime library and the Contiki operating system code
included by the linker for the above application are
approximately 22kB each. Thus the total size for the
application executing on nodes 1 and 2 is 45kB and the size
of application executing on node 3 is 47kB. The code for

the INCH component, radio component, marshalling code,
and half-channel implementation occupy ca. 8.5kB, 1.2kB,
3.5kB, and 2kB respectively (i.e. ca. 70% of the runtime).

It can be seen that the RAM usage of Insense programs
are modest whilst the code footprint is a little large. The
code generated by the Insense compiler allocates all the
space required for Insense components to execute
(including stack space). At first this appears to fit well with
the stackless model used by Contiki proto-threads.
However, Contiki processes are defined using macros and
may not be dynamically allocated. Furthermore, if
procedures or dynamic processes yield, some mechanism
must be implemented to save their state. To implement
Insense such mechanisms must be provided by a
combination of the Insense runtime and the generated code.
Combined, these contribute to the large footprint of
compiled Insense components.

6. Conclusions and Further Work
The main contribution of this paper is to present a high-

level component-based service-oriented model of
distributed sensing in WSNs supporting inter-component
communication over channels. In this model, the
components of a sensing system may discover and access
services by connecting to channels associated with other
components in the network. The self-healing of
applications is supported by an exception model that
permits applications to detect channel communication
anomalies and by language mechanisms that permit a
distributed application to be dynamically re-wired.

We have demonstrated the efficacy of this model with a
demonstrable implementation on the TMote Sky platform
running Contiki. The Cooja simulation results demonstrate
the ability of applications to autonomously configure and
self-heal. The use of Contiki has permitted a running
implementation of Insense. However, as described above it
is not ideal. This is not to belittle the Contiki environment,
which we have found to be extremely robust and well
engineered – we are using it in a manner in which it was
never intended.

To address the inadequacies in the runtime platform for
Insense, colleagues at the University of Glasgow have
initiated the development of a custom operating system for
Insense in which component creation, and inter-component
channel communication are factored out into the operating
system [23]. We believe that this will demonstrate that
Insense can be executed with a low code and data footprint
given the right runtime environment.

7. Acknowledgements
Thanks to Ron Morrison and Joe Sventek who contributed to
early discussions on the design of inter-node communication
in Insense. This work was partially supported by the EPSRC
grant “Design, Implementation and Adaptation of Sensor

Networks through Multi-dimensional Co-design”
(EP/C014782/1).

8. References
[1] A. Dearle, D. Balasubramaniam, J. Lewis, and R.

Morrison, “A Component-Based Model and Language
for Wireless Sensor Network Applications”, in Proc. of
32nd Annual IEEE International Computer Software
and Applications Conference (COMPSAC 2008)
pp.1303-1308 IEEE Computer Society, 2008

[2] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a
lightweight and flexible operating system for tiny
networked sensors”, in Proc. of The First IEEE
Workshop on Embedded Networked Sensors, Tampa,
Florida, 2004.

[3] N. Kothari, R. Gummadi, T. Millstein, and R. Govindan,
“Reliable and Efficient Programming Abstractions for
Wireless Sensor Networks”, in Proc. of PLDI’07, 2007.

[4] D. Gay, M. Welsh, P. Levis , E. Brewer, R. von Behren,
D. Culler, “The nesC Language: A Holistic Approach to
Networked Embedded Systems”, in Proc. of PLDI’03,
pp.1-11, 2003.

[5] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K.
Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh, E.
Brewer, and D. Culler, “TinyOS: An operating system
for sensor networks”, in Ambient Intelligence, pp. 115-
148, Springer Verlag 2004.

[6] I. Galpin, C. Brenninkmeijer, F. Jabeen, A. Fernandes,
N. Paton, “An Architecture for Query Optimization in
Sensor Networks”, in Proc. of the 24th IEEE
International Conference on Data Engineering
(ICDE’08), pp. 1439-1441, 2008.

[7] P. Levis, D. Gay, and D. Culler, “Bridging the gap:
Programming sensor networks with application specific
virtual machines”, Tech. rep., CSD-04-1343 UC
Berkeley, Aug. 2004.

[8] P. Levis, and D. Culler, “Mate: A tiny virtual machine
for sensor networks”, in Proc. Int. Conf. on
Architectural Support for Programming Languages and
Operating Systems (Oct. 2002).

[9] J. S. Miller, P. A. Dinda, and R. P. Dick, “Evaluating A
BASIC Approach to Sensor Network Node
Programming”, in Proc. of SenSys’09, Berkeley, CA,
USA, November 2009.

[10] A. Dunkels, “uBASIC: A really tiny BASIC
interpreter”, http://www.sics.se/~adam/ubasic/, 2007.

[11] J. W. Hui and D. Culler, “The dynamic behavior of a
data dissemination protocol for network programming at
scale”, in Proc. of SenSys'04, Baltimore, Maryland,
USA, November 2004.

[12] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt, ”Run-
Time Dynamic Linking for Reprogramming Wireless
Sensor Networks”, in Proc. of SenSys'06, Boulder,
Colorado, USA, November 2006.

[13] N. Brouwers, K. Langendoen, and P. Corke,
“Darjeeling, A Feature-Rich VM for the Resource
Poor”, in Proc. of SenSys’09, Berkeley, CA, USA,
November 2009.

[14] K. Hong, J. Park, T. Kim, S. Kim, H. Kim, Y. Ko, J.
Park, B. Burgstaller, and B. Scholz, “TinyVM, an
Efficient Virtual Machine Infrastructure for Sensor
Networks”, in Poster Session of SenSys’09, Berkeley,
CA, USA, November 2009.

[15] R. Morrison, A. L. Brown, R. Carrick, R. C. H. Connor,
A. Dearle, M. P. Atkinson, “Polymorphism, Persistence
and Software Reuse in a Strongly Typed Object
Oriented Environment”, in Software Engineering
Journal, pp. 199-204, December 1987.

[16] R. Milner, “Communicating and Mobile Systems: the
Pi-Calculus”, Cambridge University Press; 1st edition,
1999.

[17] O. Sharma, J. Lewis, A. Miller, A. Dearle, D.
Balasubramaniam, R. Morrison, and J. Sventek,
“Towards verifying correctness of wireless sensor
network applications using Insense and spin”, in Proc. of

16th International SPIN Workshop on Model Checking
of Software (SPIN 2009), 2009.

[18] A. Dunkels, F. Osterlind, Z. He, “An Adaptive
Communication Architecture for Wireless Sensor
Networks”, in Proc. of SenSys’07, Sydney, Australia ,
November 2007.

[19] “Link-state shortest-path-first routing” in F. Halsall ,
“Computer Networking and the Internet”, pp. 344-352,
Addison-Wesley, London, 2005.

[20] C. E. Perkins and E. M. Royer, “Ad-hoc On-Demand
Distance Vector Routing”, in Proc. of the 2nd IEEE
Workshop on Mobile Computing Systems and
Applications, pp. 90-100, New Orleans, LA, February
1999.

[21] E. W. Dijkstra, "A note on two problems in connexion
with graphs", in Numerische Mathematik 1, pp. 269-
271, 1959.

[22] F. Österlind, “A Sensor Network Simulator for the
Contiki OS”, Swedish Institute of Computer Science
(SICS) Technical Report T2006:05, ISSN 1100-3154,
February 2006.

[23] P. Harvey, “InceOS: The Insense Specific Operating
System”, to be published as Computer Science
Technical Report, University of Glasgow, 2010.

