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Abstract 
Wireless sensor networks are complex, distributed 

systems whose components are commonly expected to 
operate in the face of unforeseen changes to the 
environment. Sensor network applications need be self-
aware to be capable of adapting in response to such 
changes. We address this requirement with a high-level, 
component-based language model and implementation. In 
Insense, a sensing system is modelled as a composition of 
software components that interact via channels that may be 
published to the network and used to identify services 
available to other networked components. The language 
permits an application to dynamically discover both 
network topology and channels that have been published 
for inter-node use. Self-configuring application 
components are thereby able to search for the service 
channels they require and access these by configuring the 
channel bindings.  Self-healing is supported by an 
exception model permitting components to detect channel 
communication anomalies and through language 
mechanisms permitting applications to be dynamically 
reconfigured. We detail aspects of the Insense language 
implementation on the TMote Sky platform running 
Contiki and present the space requirements for sample 
application components. Simulation results are presented 
for a sample application to demonstrate its ability to 
autonomously configure and self-heal. 

Categories and Subject Descriptors 
C.2.4 [Computer Systems Organisation]: Computer 
Communication Networks – Distributed Systems; D.3.2 
[Programming Languages]: Language Classification – 
Specialized application languages 

General Terms 
Design, Languages, Performance. 

Keywords: Self-managing, Self-healing, In-network 
Service Discovery, Abstraction, Programming. 

1. Introduction 
Wireless sensor networks may be deployed in 

inaccessible locations where frequent administrator visits 
are not feasible. As such, these sensing systems are 
commonly expected to operate autonomously. Sensor 
network applications should thus be self-aware and capable 
of monitoring their status and taking actions to adapt and 
maintain system functionality in response to unforeseen 
changes to the environment.  

Application design and implementation for the 
resource-constrained architectures commonly used in 
WSNs is traditionally very difficult. Developers are 
required to write distributed programs for highly resource 
constrained devices and deal with memory management 
and synchronization issues without high-level software 
engineering support. Furthermore, WSN applications must 
cater for node failure and unreliable radio communications.  

Our main contribution in this paper is to present a high-
level model of distributed sensing in WSNs. The model 
supports autonomic configuration of applications through a 
service-oriented approach based on inter-component 
communication over channels. In this approach, the 
components of a sensing system discover and access the 
required services by connecting to channels associated with 
other components in the network. Self-healing of 
applications is supported through an exception model that 
permits applications to detect channel communication 
anomalies indicating that a service provider is unreliable or 
no longer available. Language mechanisms support the 
healing process by permitting an application to be 
dynamically reconfigured. We present a language model 
and implementation to support these abstractions. 

Insense [1] is a component-based programming 
language which has been developed to facilitate WSN 
application development by raising the abstraction level 
and thereby reduce the scope for programmer error. An 
Insense application is modelled as a composition of active, 
stateful components that interact via typed, directional, 
synchronous channels. Figure 1 depicts an Insense 
application in which a TempSource component instance ts 
sends a temperature measurement to a Sink component 
instance sink when it receives a timing event from a Ticker 
component.  

 



 
Figure 1. Timed Temperature Acquisition 

The activity of the TempSource component is defined 
by repeatedly executing the following Insense code 
segment  
receive tick from ticks 
send tempReading() on output 

and the activity of the Sink component is defined by 
repeatedly executing  
receive datum from input 
store(datum) 

One of the fundamental design principles of Insense is 
that the complexity of distributed application design be 
bourne by the language implementation rather than by the 
programmer. In the example above, the TempSource 
component waits for a tick to arrive on its ticks channel 
before sending a temperature measurement on its output 
channel. Similarly the Sink component waits for a datum to 
arrive on its input channel before storing the datum. The 
channel construct thereby abstracts over communication 
and synchronization. 

Communication over channels may also abstract over 
radio communication and routing decisions as discussed 
briefly below and in more detail in section 3 and section 4. 
The source and sink components depicted in Figure 1 may 
be located on the same node or on different nodes in the 
network and potentially separated by a number of 
intermediate nodes without any alteration to their program 
code being necessary. Insense thereby promotes the design 
of WSN applications comprising components that are 
agnostic of their deployment. As a result, a sensing system 
may be assembled by composing a number of software 
components which were written and compiled prior to their 
placement being decided. 

Configuration of Insense applications is achieved by 
instantiating components and connecting and dissolving 
channel bindings. Component channels may be published 
to the network with a name that can be used to identify a 
service provided by that component. The language permits 
an application to dynamically discover both network 
topology and channels that have been published for inter-
node use. Self-configuring application components are 
thereby able to search for the service channels they require 
and access these by configuring the channel bindings.  

An exception model permits applications to detect 
channel communication anomalies which may result from 
unreliable radio links or node failure. Applications may 
thus be designed to support distributed self-healing in that 
their components may choose to switch service providers 
when a service channel is found to be unreliable. 

Alternatively, they may report errors to a monitoring 
component, which modifies inter-component bindings. 

The remainder of the paper is organised as follows: 
Section 2 describes related work. The Insense language 
model is presented in section 3. Section 4 details some 
aspects of our implementation which runs on Contiki [2] 
and is tailored towards TMote Sky, a popular WSN node 
architecture with 48KB ROM and 10KB RAM. In section 
5 we present the space requirements for sample application 
components and simulation results to demonstrate 
autonomous configuration and self-healing after detecting 
node failure. Section 6 contains our conclusions and 
outlines further work. 

2. Related Work 
This section briefly outlines approaches found in the 

literature for simplifying WSN application development 
and permitting dynamic reconfiguration of applications. 

The authors of [3] present the Pleiades language which 
is a general purpose language that aims to simplify WSN 
application development. Pleiades extends the C language 
with constructs that permit developers to design a central 
WSN application rather than programs for each node. The 
central application is statically decomposed into nesC 
components [4] by the compiler. The compiled components 
may subsequently linked with the TinyOS library like any 
other TinyOS program [5]. Furthermore, the language 
permits node-local state to be named and accessed by the 
central program after it has been distributed over the 
network. As state is shared among both local components 
and networked components, coherency issues are to be 
expected. As a result, their approach requires locking and 
distributed deadlock detection and prevention mechanisms 
to guarantee a serial ordering in the face of concurrent 
execution.  

The authors also present a user-directed concurrent loop 
construct which permits the central program to iterate over 
nodes in the network and execute the loop body 
concurrently on each node. This approach raises the 
abstraction level for WSN application development 
considerably from what we have observed elsewhere in the 
literature. It also appears to produce efficient code. 
However, it is not entirely clear how their approach would 
lend itself to applications in which different code is to be 
executed on a number of network nodes, for example, to 
support distributed database queries [6]. It is also unclear to 
what extent their approach deals either with unreliable 
radio communication or the dynamic reconfiguration of 
applications. 

Interpreted languages such as TinyScript [7] for the 
Mate virtual machine [8] and an implementation of BASIC 
[9] based on a small uBasic [10] interpreter that was 
developed for Contiki are also gaining recognition in the 
WSN community. This may be due to their simplicity and 
ability to reduce code size. However, they would appear to 



lack the expressibility for programming WSNs. For 
example, TinyScript does not provide support for multi-
hop or unreliable radio transmissions and BASIC, in our 
experience, does not lend itself well to engineering 
complex applications. Our aim is to simplify application 
development by abstracting over low-level concerns while 
permitting the design of complex WSN applications.  

Support for dynamic reconfiguration of WSN 
applications is, in our experience, not common place in the 
WSN community and provided at the operating system 
level rather than at the language level, if at all. Approaches 
in the literature centre on permitting program code to be 
replaced at runtime. A node’s entire system image may be 
swapped for another [11] or smaller chunks of object code 
may be loaded dynamically either from a node’s non-
volatile store or after receiving it from the radio [12]. As 
sending system images or object code by radio may be 
costly in terms of energy consumption, some researchers 
promote the use of virtual machines and language 
interpreters to reduce code size and thereby aid 
reconfiguration by over-the-air programming [13][14]. 
While code replacement enables an application to be 
altered entirely, in this paper we focus on performing 
adaptation at the language level that is analogous to re-
wiring a set of system components. However, the two 
approaches are complimentary.  

3. Insense Language Model 
In the following we present the model of the Insense 

language which is designed to abstract over the 
complexities of memory management, concurrency control, 
synchronisation, radio communication, routing decisions, 
and aims to decouple applications from the operating 
system and hardware. 

3.1 Components and Procedures 
Components are the unit of concurrent execution and 

the basic building blocks of Insense applications thus 
promoting a strong cohesion between the architectural 
description of a system and its implementation. 
Components are stateful, strongly encapsulated, and single 
threaded in order to prevent accidental race conditions. 
That is, components may contain updateable locations 
which can only be altered by the locus of control associated 
with a particular component instance. 

The activity of a component is defined by its behaviour 
which is specified in a syntactic construct of the same 
name. A component’s behaviour may be likened to a loop 
which starts to execute immediately after a component has 
been instantiated and continues until it is stopped either by 
the component itself or by some other component.  
Component instances are created by calling one of the 
component’s constructors. Components may instantiate 
other components and alter the connection bindings 
between such components. 

component TempSource presents ITempSource { 
  constructor() {} 
  behaviour { 
    receive tick from ticks 
    send tempReading() on output 
  } 
} 

Figure 2. Temperature Source Component 
The type of a component is represented by the set of 

channels (described in section 3.3) that it presents in its 
interface definition. The definition of the TempSource 
component depicted in Figure 1 is shown in Figure 2. The 
second line in the behaviour loop sends the result of calling 
the tempReading() procedure on its output channel. The 
tempReading() procedure is an example of a global 
procedure which, in this case, is provided by the runtime 
system as part of a standard library. Procedures may take 
any number of parameters and return a single value. In 
order to be able to determine an upper limit for the memory 
usage of programs, recursion is not permitted in Insense. 

The interface for the component in Figure 2 may be 
defined as 
type ITempSource is interface( 
  in bool ticks ; 
  out real output 
) 

and an instance of the component may be created by 
executing 
ts = new TempSource() 

3.2 Types 
The language supports the following basic types: 

boolean, byte, integer, and real. An enumeration type enum 
and an immutable string type are also provided. The 
language supports the following constructed types: 
components, interfaces, structured record types, and arrays. 
Examples of component and interface declarations have 
been shown above. A structured record definition is shown 
in section 3.5.3 below. To statically determine memory 
requirements and simplify memory management, records 
may not contain other record types or references. The lack 
of pointers in records combined with shallow-copying 
when sending records over channels enforces the strong 
encapsulation of component locations described above. 

Insense also supports an infinite union type called any 
[15]. Arbitrary values may be injected into the type any and 
a project operation permits values to be extracted. Arrays 
are the only collection type supported by the language and 
these must be initialized on declaration and their size must 
be defined using a literal to enable the required memory to 
be determined statically. 

3.3 Channels 
Channels are typed, directional, and synchronous. The 

type of a channel is defined by its direction, either in or 
out, and the type of its payload. Apart from component 
instances, all values in the language can be transferred over 



channels of the appropriate type, including channels 
themselves. Arbitrary values can be sent on a channel by 
specifying the channel payload type to be any.  

Attempting to send a datum on an unconnected channel 
results in the caller blocking until the datum has been sent 
to a connected receiver. Similarly, attempting to receive 
from an unconnected channel causes the caller to block 
until data can be received. These simple rules permit 
components to be dynamically re-wired without the need 
for complex synchronisation mechanisms. Thus, the 
semantics of the channel abstraction in Insense is akin to 
that of π-calculus [16].  

Insense provides operations to connect and disconnect 
channels and to send and receive data on them. Assuming 
the existence of sink, an instance of the Sink component 
from Figure 1, we may connect ts, the TempSource 
component instance, to the sink as follows 
connect ts.output to sink.input 

Disconnection of the sink’s input channel from all channels 
to which it is connected is achieved by 
disconnect sink.input 

The use of send and receive is illustrated in the behaviour 
loop in Figure 2 above. As the operations are synchronous 
the TempSource component in Figure 2 will block until it 
receives a tick on its ticks channel and will block until the 
datum sent in the send clause has been received by another 
component before continuing to execute its behaviour loop. 
Channels are thus used to abstract over both 
communication and synchronisation. 

So far we have only considered the case where a 
channel is used to connect two component instances 
together. Insense permits a single channel to connect 
multiple component instances together. For example, a 
channel may be used to connect two source components to 
a single sink. This scenario is depicted in Figure 3 (a) in 
which two TempSource component instances ts1 and ts2 
are both connected to the input channel of the sink 
component instance. While the semantics of sending and 
receiving data on one-one channels is deterministic, non-
determinism is introduced for channels which connect 
multiple component instances. The sink component in 
Figure 3 (a) may receive a datum on its input channel from 
either one of the two sources ts1 and ts2. The order in 
which data are received from these sources depends on 
their scheduling and it is not possible to determine the 
sender at the sink.  

Figure 3 (b) depicts the scenario where a single source 
output channel is connected to multiple sinks. When ts 
sends a datum on its output channel it is received by one of 
the two sink components. If, for example, sink1 is ready to 
receive a datum while sink2 is not then the datum will be 
sent to sink1. If both sinks are ready to receive data then a 
fair decision is made. If neither sink is ready to receive then 
the source will block until one sink is ready to receive.  
The combination of  one-many  and  many-one  connection  

(a)

sink : Sink

ts2 : TempSource

out real output

in bool ticks

ts1 : TempSource

in real input

out real output

in bool ticks

sink2 : Sink

ts : TempSource

out real outputin bool ticks

sink1 : Sink

in real input

in real input

(b)  
Figure 3. Many-one and one-many channel connection 

patterns permits complex connection topologies to be 
specified in Insense. 

Sometimes it is necessary to non-deterministically 
receive a value from one of a number of input channels. 
For example, a sink component may be required to receive 
different types of data from input channels connected to 
different sources. For this purpose, Insense provides a 
guarded, multi-channel select statement. The select 
operation tries to receive from a member of a set of input 
channels for which the guard conditions are met and input 
is available and executes a code block associated with that 
selection. An optional default clause is provided which 
permits the caller to continue execution even if no input is 
available or the guard conditions are not met. 

A more detailed explanation of Insense channels, their 
semantics and of the non-deterministic select operation can 
be found in [1] and the correctness of the channel 
implementation for intra-node communication with respect 
to the desired semantics is demonstrated in [17]. 

3.4 Hardware Access 
Access to parts of the hardware is provided through a 

combination of pre-defined components and procedures. 
The tempReading() procedure called from the behaviour in 
Figure 2 returns a temperature reading to the caller. The 
Ticker component provides access to the system clock and 
can be instructed to send ticks on specific channels at 
particular intervals. The following procedure call would be 
used to arrange ticks to be sent to the ticks channel 
associated with the TempSource component instance ts 
every 10 seconds. 
periodicEnSchedule(ts.ticks, 10.0) 

3.5 Inter-node Channels 
In addition to intra-node inter-component 

communication, Insense permits channels to be used for 
inter-component communication when components are 
located on different nodes in the network. When used in 
this manner they can abstract over data marshalling and 
multi-hop radio communication primitives and support a 
channel-based, service-oriented model of distributed 
sensing in WSNs. This model promotes the design of 
deployment agnostic code and supports self-configuring 
and self-healing applications. Just as with intra-node 
channels, all values in the language apart from components 
can be sent on inter-node channels of the appropriate type 
including channels themselves. Attempting to send or 



receive on unbound inter-node channels results in the caller 
blocking until a connection is established. 

3.5.1 Exposure 
Inter-node channels may be likened to services which 

can be dynamically discovered and accessed by 
configuring component connections to them. Specifically, 
channels can be exposed to the network using a publish 
operation. An example of the publish operation is shown 
below in which an incoming channel called input 
associated with a component instance sink is made visible 
to networked components. 
publish sink.input as "sink" 

The channel is associated with the string "sink", which we 
term the local channel name (LCN), and is made public to 
the network along with its associated channel direction and 
payload type. The LCN "sink" may be seen to represent a 
sink service that is provided to components executing on 
network nodes and accepts values of type real in this case. 
The LCN is required to be unique to a node and an error 
will result if the name "sink" has already been used locally 
to denote a public channel. LCNs are not required to be 
globally unique across a set of nodes. That is, multiple 
nodes may make channels globally accessible using the 
same name.  

3.5.2 Binding 
To utilise a channel published using a LCN, nodes may 

make use of an extended version of the already familiar 
connect operation. The connect operation is extended to 
permit either of the two channel end-points to be specified 
as a (node-address, LCN) pair. The disconnect operation is 
extended similarly. We illustrate the use of the extended 
connect operation in an example in which there are two 
nodes with radio addresses A and B. The input channel 
associated with a sink component instance on node B is 
published with the LCN "sink" using the publish operation 
as outlined above. Node A contains a TempSource 
component instance ts. The two component channels may 
be bound together by executing the following on node A. 
connect ts.output to "sink" on B 

Once a connection has been established any output written 
on the channel ts.output on node A will be transmitted 
via the radio for delivery to the input channel associated 
with the LCN "sink" on node B.  

Channel bindings may be manipulated from any node in 
the network. If the following were executed on node A 
publish ts.output as "tempSource" 

then a binding between the TempSource and Sink 
components may be established from any node in the 
network by executing 
connect "tempSource" on A to "sink" on B 

Inter-node channel bindings are dissolved using the 
disconnect operation.  

The inter-node channel model thereby supports remote 
configuration and reconfiguration of WSN applications by 

permitting the wiring between components to be adapted at 
runtime even when components are distributed over a 
network of nodes.  

3.5.3 Discovery 
In order to support self-configuration in WSNs an 

application must be able to discover information about the 
network during its deployed lifetime. Two operations are 
provided to permit nodes to discover the addresses of 
neighbouring nodes. The first operation 
Address[] getNeighbours() 

returns an array of addresses representing the direct 
neighbours of the node executing the operation. The 
Address type is declared as a byte array in the language and 
represents the address type used under Contiki. The second 
operation 
Address[] getNeighboursOf( Address node ) 

discovers the addresses of direct neighbours for the 
specified node. Insense also provides an operation to 
determine the caller’s node address 
Address getNodeAddress() 

and an operation to determine the minimum hop distance 
between two nodes specified by their addresses 
integer getNumberHops(Address src,Address dest) 

The latter operation returns the value -1 when no route 
between the specified nodes can be found. Programs may 
use these operations to discover information about network 
topology. 

The two following operations permit application 
components to discover channels that have been published 
for inter-node communication by particular nodes. The two 
operations 
PublicChannel[] getPublicChannels() 
PublicChannel[] getPublicChannelsOf(Address a) 

return an array of structs representing the channels 
published by this node and the specified node respectively. 
The public channel type is declared as 
type PublicChannel is struct ( 
  Address address ; 
  ChannelDirection direction ; 
  string typerep ; 
  string LCN 
) 

where the channel direction is an enumeration type given 
by 
type ChannelDirection is enum (Out, In, Either) 

and the typerep element is a human readable string 
representation of the channel’s payload type. The language 
provides a typerepof operator which produces the string 
representation for any given value in the language. For 
example, if we declared a variable temp as 
temp = 21.0 

then the following operation would declare a string s and 
initialise it with the value “r”, the string representation for 
the type real. 
s = typerepof temp 

 



The last discovery operation  
Address[] findNodesPublishing(  
  ChannelDirection dir , 
  string typerep , 
  string LCN 
) 

combines the functionality of the other channel operations 
and returns a collection of addresses of nodes that have 
published a channel with the given LCN, direction, and 
payload type. If a LCN, direction, and type descriptor are 
used by the programmer to indicate a particular network 
service then the findNodesPublishing operation may be 
seen to permit the discovery of such services in the 
network. The implementation of findNodesPublishing also 
supports some degree of wild-carding which we intend to 
extend in the future to permit arbitrary service queries to be 
constructed. All the above operations which return an array 
value return a zero-length array in the case of failure. 

We demonstrate the use of in-network service 
discovery with an example in which a TempSource 
component (as shown in Figure 2) is bound to a remote 
Sink component (as shown in Figure 5) by a third 
TempBinder component (as shown in Figure 6).  

The configured application is depicted in Figure 4. The 
Sink component definition for node B, its instantiation and 
channel exposure are shown in Figure 5. The sink 
repeatedly waits for a datum to be sent to its input channel 
and prints the datum to the serial port using a polymorphic 
print procedure, printAny. In order to permit remote 
components to discover and connect to its input channel, 
the channel is published to the network and associated with 
the LCN “sink”. The definition, instantiation, and en-
scheduling of the TempBinder component are shown in 
Figure 6. The TempBinder constructs a local TempSource 
component instance and initialises its ts location with that 
instance.  Due to strong encapsulation in components, the 
TempSource component is not visible from outside its 
creator. It follows that any binding and en-scheduling of 
the child component must be performed by the parent. To 
this end, the TempSource component’s tick schedule is set 
by the TempBinder component in the constructor. The tick 
schedule for the TempBinder component is set after its 
construction in the main sequence. 

 
 

 
Figure 4. Self-configuring Application 

 

type ISink is interface( in real input ) 
 
component Sink presents ISink { 
  constructor() {} 
  behaviour { 
    receive data from input 
    printAny(any("sink got reading ")) 
    printAny(any(data)) // log receipt of data 
  } 
} 
 
sink = new Sink() 
publish sink.input as "sink" 

Figure 5. Passive Sink Component 
type ITempBinder is interface( in bool ticks ) 
 
component TempBinder presents ITempBinder{ 
  ts = new TempSource() 
 
  constructor(){  
    periodicEnSchedule(ts.ticks, 60.0) 
  } 
 
  behaviour { 
    receive tick from ticks //wait for schedule 
    sinks = findNodesPublishing(In,"r","sink") 
    if sinks.length > 0 then {// we found sinks 
      // bind source to fist sink 
      connect ts.output to "sink" on sinks[0] 
      stop 
    } 
  }  
}  
tb = new TempBinder() 
periodicEnSchedule(tb.ticks, 120.0) 

Figure 6. TempBinder Program 
The activity of the TempBinder component may be 

described as follows. After creation, the component waits 
for a tick to be received prior to searching for sink service 
providers in the network using the findNodesPublishing 
operation. Specifically, the component searches for 
networked components exporting an incoming channel 
with the LCN “sink” of payload type real (denoted by the 
string representation “r”). If no sinks are found then the 
next iteration of the behaviour loop is executed. The 
component is thereby able to periodically repeat its search 
until it finds a sink. If one or more sinks are found then the 
component connects its local TempSource component to 
the first sink in the list and stops. Meanwhile, the 
TempSource component is now connected and able to send 
temperature readings to the sink over the inter-node 
channel connection established by its parent. 

The inter-node channel connecting the source to the 
sink abstracts over any multi-hop routing that may be 
necessary to establish and use the connection. That is, there 
may be any number of intermediate network nodes between 
the source and the sink which route both data as well as 
service requests and responses to their respective 
destinations. 

3.5.4 Exception Model 
The exception model in Insense permits applications to 

detect failing connections and deal with uncertainties while 



establishing remote bindings and communicating over 
inter-node channels. Specifically, components can be 
designed to detect whether a channel operation has either 
succeeded, failed, or whether the outcome of the operation 
is unknown. For this purpose, Insense defines a fixed 
number of exceptions that may be thrown when operating 
on inter-node channels.  

Four inter-node channel operations may throw 
exceptions in Insense. First, the publish operation throws 
the exception DuplicateLCNException when the specified 
LCN is already in use on the node executing the publish 
operation. Second, the connect operation throws the 
exceptions: 

• ChannelsUnknownException when a channel name 
cannot be found on a remote node; 

• IncompatibleChannelsException when the channel 
types are incompatible; 

• NodesUnreachableException when a route from the 
caller to one or more nodes hosting the public 
channels cannot be found;  

• BindStatusUnknownException when routes to the 
destinations are found, but confirmations of the 
channel binding status are not received. 

Third, the exceptions NodesUnreachableException and 
BindStatusUnknownException may be thrown by the 
disconnect operation with the same semantic interpretation 
as for the connect operation. Finally, the send operation 
may throw the following exceptions when sending on an 
output channel: 

• NodesUnreachableException when no routes to the 
destination channels can be found – the output 
channel is implicitly disconnected from all inputs; 

• SendStatusUnknownException when a route can be 
found, and a datum is sent, but a confirmation is not 
received from the remote node. 

Insense permits programmers to define exception 
handlers to handle particular exceptions. The language 
supports a try-except clause that is similar to the try-catch 
clause in Java. In contrast to exception handling in Java, 
the occurrence of exceptions in Insense programs is 
ignored unless the operation is within a try-block. That is, 
execution is allowed to continue optimistically even when 
one of the exceptions above occurs. Thus, for example, 
when knowledge of channel connectivity and reliable data 
transfer from one component to another is not required the 
programmer may simply choose to omit a try-except clause 
for the relevant send operation. In Insense, a try-block must 
be followed by at least one matching except-block. When 
an exception is thrown by an operation in a try-block 
execution immediately jumps to the matching except-block 

or to the instruction following the last except-block when 
no matching exception handler is defined.  

The use of try and except is illustrated in Figure 7 
which depicts a variation of the example from Figure 4 
above in which an error channel connects the TempSource 
to the TempBinder on node A. A second sink component 
instance is also deployed on node C. The definition of the 
TempSource component and its interface is shown in  
Figure 8. The TempSource component in Figure 8 only 
differs slightly from the one shown in Figure 2. First, 
tracing information has been added which is later used to 
illustrate a Cooja simulation. The major difference is that it 
uses a try-except clause to catch exceptions when 
attempting to send a datum to the sink. The component is 
thereby capable of sending a notification on its error 
channel when it detects that its link to the sink is broken as 
indicated by the NodesUnreachableException. The 
exception SendStatusUnknownException is only used for 
trace purposes meaning that occasional data loss is ignored. 
The application components could trivially be adapted to 
permit data to be resent in the event of the exception 
SendStatusUnknownException if a greater reliability were 
required. 

 
Node A

Ticker

ts : TempSource out real outputin bool ticks

tb : TempBinder

In bool ticksin bool ticks

in bool error

binds

out bool error

Node C

sink : Sinkin real input

Inter-node channel

Broken Link
Node B

sink : Sinkin real input

 
Figure 7. A Self-healing Application 

type ITempSource is interface( 
  in bool ticks ; 
  out real output ; 
  out bool error 
) 
 
component TempSource presents ITempSource { 
  constructor() {} 
  behaviour { 
    receive tick from ticks 
    try {  
      send tempReading() on output 
      printAny(any("ts: send ok")) 
    } except NodesUnreachableException { 
      printAny(any("ts: send unreachable")) 
      send true on error  
    } except SendStatusUnknownException { 
      printAny(any("ts: send unknown")) 
    } 
  } 
} 

Figure 8. Detection of Broken Links 
 



type ITempBinder is interface(  
  in bool ticks ; 
  in bool error 
) 
 
component TempBinder presents ITempBinder{ 
  ts = new TempSource() 
 
  constructor(){  
    periodicEnSchedule(ts.ticks, 60.0) 
    connect ts.error to error 
  } 
  behaviour { 
    receive tick from ticks  
    sinks = findNodesPublishing(In,"r","sink") 
    for i = 0 .. sinks.length-1 do {  
      try { 
        // try to bind the source to a sink  
        connect ts.output to "sink" on sinks[i] 
        printAny(any("tb: bound")) 
        // bind succeeded, wait for error 
        receive oops from error 
        printAny(any("tb: link broken")) 
      } except NodesUnreachableException { 
          printAny(any("tb: connect failed")) 
          // connect has failed, try next sink 
      } except BindStatusUnknownException { 
          printAny(any("tb: connect unknown")) 
          // may be bound, still try next sink 
      } 
      printAny(any("tb: try next sink")) 
    } 
  } 
} 
tb = new TempBinder() 
periodicEnSchedule(tb.ticks, 120.0) 

Figure 9. Reliable Binding and Self-healing 
The TempBinder component in Figure 9 differs in three 

aspects from the one in Figure 6. Similarly to Figure 8, 
trace information has been added to the code. Secondly, the 
component iterates over the sinks array in its behaviour and 
tries to connect its TempSource component to a sink 
reliably. 

If the status of the connect operation is reported as 
having failed or as unknown, the component tries to 
connect to the next sink in its sinks array. Lastly, when an 
inter-node binding to a sink is established the component 
no longer stops its behaviour. Instead, it waits for an error 
signal from the TempSource component signifying that the 
inter-node connection has been lost. If such an error signal 
is received, the component tries to re-establish a connection 
to a different sink, starting with any untried sinks in the 
array. If the component is unsuccessful in binding to these 
cached sinks, the behaviour loop resumes and initiates a 
new service discovery and binding phase. 

The use of exceptions in combination with service 
discovery and binding mechanisms may thereby be seen to 
support self-configuration and self-healing. 

3.5.5 Semantic Differences 
There are necessarily some differences in the semantics 

of sending on inter-node channels as opposed to intra-node 
channels. First, nodes may fail, be rebooted, and radio links 
may be unreliable or lost completely causing inter-node 

channels to fail. As a consequence messages may not be 
delivered to the intended receiver. In such cases an 
exception is thrown to the sender in order to permit 
applications to deal with failures of communication links. 

A second difference is in inter-node channels connected 
to multiple inputs. The runtime system attempts to send the 
datum to each connected input channel in succession until 
it receives a message to confirm receipt (an ACK message) 
from a receiver. As one or more ACKs may be lost the 
datum may be received by multiple remote components. 

3.5.6 Deployment Agnostic Code 
The inter-node channel abstraction in Insense enables 

the composition of WSN applications from deployment-
agnostic components. The agnosticism pertains to their 
design which does not require knowledge of their 
deployment at compile time. That is, Insense components 
may be designed much like the Sink and TempSource 
components, shown in Figures 5 and 8 respectively, such 
that they cater for both intra-node and inter-node 
communication during their deployment. Published 
channels may be used both locally and remotely. 
Consequently, the TempBinder component from Figure 9 
could be deployed on the same node as the Sink component 
without requiring any alteration to the program code. 

The three main benefits of such deployment 
agnosticism are as follows. First, the programmer can focus 
on higher level component logic and their interaction with 
other components rather than on component placement. 
Second, some facets of an application can initially be tested 
on a single node prior to being distributed over multiple 
nodes. Third, components may be compiled prior to their 
placement being decided. Insense thereby enables the 
composition of WSN applications from pre-defined and 
pre-compiled (as well as tailor-made) components. We 
envisage the future construction of software engineering 
tools for graphical composition of WSN applications by 
tailoring the instantiation, scheduling, placement, and 
wiring of pre-defined and pre-compiled components. 

4. Implementation 
In this section we focus on the inter-node channel 

implementation although parts of the implementation 
described in [1] and [17] are briefly presented for the 
reader’s convenience. 

The Insense compiler is written in Java and generates C 
source code that can be compiled and linked with the 
runtime system library and operating system. The code 
generation module is currently tailored towards the Contiki 
platform. The compiler generates main.h and main.c files 
containing the C code for global Insense definitions 
including procedures declared outwith components and 
globally defined types as well as the main sequence. The 
latter typically contains code to construct component 
instances and bind these together. 



4.1 Components Structs and Channels 
The compiler generates a source and header file for 

each component and struct declaration. When the 
programmer declares a component type the compiler 
generates a correpsonding C struct with members for 
component fields, channels, and variables and a pointer to a 
table of function pointers. This table contains a reference to 
the component’s behaviour function and to functions that 
provide access to its component channels. The compiler 
also generates code for the component constructors and 
local procedures. Component constructors, procedures, and 
behaviour are implemented as Contiki processes so as to 
permit them to execute blocking calls resulting from 
sending and receiving data on channels. These processes 
each have an associated frame which is dynamically 
allocated on the heap when the process begins and which is 
used to store their state. The frame is destroyed when the 
process ends. 

Insense structs are represented by C structs in the 
implementation with appropriate constructor and copy 
functions, the latter being used to support a pass-by-value 
scheme when sending structs over channels. 

Every channel in the language is represented by a half-
channel object in the implementation. Half-channel objects 
contain a number of fields as outlined in [17], including a 
list representing connections to other half-channels. 

4.2 Memory Management 
Our implementation makes use of dynamic memory 

allocation and a reference counting garbage collection 
scheme. Reference-counting garbage collection is suitable 
for Insense due to its simplicity and because Insense does 
not permit circular references. In our implementation a 
reference count and pointer to a destructor is stored along 
with every dynamically allocated object and called when 
the reference count reaches zero. The compiler generates a 
destructor for every dynamically constructed type in the 
language. 

4.3 Inter-node Channels 
The inter-node channel implementation comprises two 

main modules in the runtime library, neither of which are 
visible to an Insense programmer: 1) a radio module and 2) 
an inter-node channel handler (INCH) module. The INCH 
module provides support for all inter-node, inter-
component operations. The radio module is designed to 
provide radio functionality to the INCH module and 
supports data transfer using single-hop, best-effort, unicast 
and best-effort, local area broadcast. The Radio module 
and the INCH module are described in more detail below. 

4.3.1 Radio Module 
The radio module is modelled as a composition of two 

Insense components, a RadioIn component and a RadioOut 
component as depicted in Figure 10.  

The RadioOut component presents an interface 
containing a single incoming send channel and the RadioIn 
component presents an interface containing an outgoing 
receive channel. Both components use the Unicast and 
Indentified Broadcast layers in the Rime stack [18] as 
provided under Contiki. The RadioIn channel carries data 
of type RadioPacket which contains two fields: the 
destination address, and data encoded as an Insense any 
type. 

The code necessary for the marshalling and un-
marshalling of data is the responsibility of the Insense 
compiler which analyses the program and generates the 
appropriate functions. Pointers to these functions are stored 
in a map indexed by a type descriptor. When a datum is 
sent on an inter-node channel the appropriate serialisation 
function is called prior to transmission. When data is 
received from the radio the appropriate de-serialisation 
function is called after examining the type information in 
the payload. 

Data is sent over the radio using the Rime unicast 
primitive if the address field contains a valid unicast 
destination address or it is broadcast if the field contains a 
zero-length array (our equivalent of a broadcast address). 
The RadioIn component receives notification of incoming 
radio messages via a call-back function that is registered 
with the Rime implementation. Once notified the 
component deserialises the message data and constructs a 
RadioPacket datum with the address field set to the source 
of the transmission. The packet data is then sent on the 
component’s outgoing receive channel to the INCH. 

4.3.2 Inter-node Channel Handler 
The INCH component presents two sets of interfaces, one 
set to the radio module over which it abstracts, the other to 
provide inter-node channel services to the components 
running on a node. The first set contains incoming  
and outgoing channels on which data may be sent to and 
received from the radio as described in Section 4.3.1. The 
second is more complex and offers channels for the 
management and operation of: 

1. Scheduling ticks; 
2. Requests for connecting and disconnecting 

channels, and discovery operations, and; 
3. Inter node, inter-component messages. 

 
Figure 10. Radio and INCH Components 

 



The ticks channel is used to schedule the dissemination 
of routing information to the network and is discussed in 
more detail in section 4.3.7. Requests for connect, 
disconnect, and channel discovery operations are made on 
the connection_change and channel_query channels shown 
in Figure 10. Finally, inter node, inter-component messages 
are sent and received on a set of channels called the 
local_component_channels set which contains channels 
that are connected to local components as the result of a 
connect operation. The local_component_channels set in 
Figure 10 is empty representing a scenario in which no 
publish and connect operations have taken place. 

The INCH module is modelled as a single Insense 
component. The component performs a guarded, multi-
channel select operation in its behaviour loop and then 
invokes the appropriate code block depending on the 
receiving channel. The channels from which INCH 
attempts to receive are: connection_change, 
channel_query, radio_in, ticks, and all incoming channels 
in the local_component_channels set. 

4.3.3 Channel Exposure 
As described in section 3.5.1 channels are exposed 

using the publish operation. To record such channels, each 
INCH maintains a public channels table containing local 
channel names, their direction, type and channel identifier 
which uniquely identifies local channels. This table is used 
whenever connection requests are made and when queries 
such as getPublicChannels or findNodesPublishing are 
performed. To illustrate its use, consider the scenario in 
Figure 11 in which a Receiver component has been 
declared and instantiated on node B as follows 
r = new Receiver() 

and its input channel has been published for inter-node use 
with the LCN “Recv” by executing 
publish r.input as "Recv" 

When the publish operation is executed, the INCH 
component examines its public channels table and throws 
an exception if the specified LCN is already in use. If the 
LCN is not in use it constructs a new channel and enters 
into its local_component_channels set after connecting it to 
the supplied component channel. The INCH then enters the 
new information into its public channels table. 

4.3.4 Channel Binding 
The INCH also maintains a Bindings table, which 

records inter-node, inter-channel connections. This table 
contains four fields: two node addresses and two local 
channel names. Entries in this table are created, whenever 
an inter-node connection is created and removed when a 
binding is dissolved.  

Figure 11 depicts the scenario in which a component 
channel (of type out real) on node A is connected to a 
public incoming channel with the LCN “Recv” on node B 
(of type in real). 

When the local INCH component receives the bind 
request as a result of the connect operation, it forwards that 
request via its radio to the remote INCH on node B with a 
message containing the four fields required to create an 
entry in node B’s Bindings table.  

Upon receipt of the request from the radio_in channel 
and, after finding the incoming channel with LCN “Recv” 
in its public channels table and creating a new binding in 
its Bindings table, the remote INCH sends an 
acknowledgment message to node A. Node A’s radio 
component forwards the acknowledgement to node A’s 
INCH component upon which it adds a new channel to its 
local_component_channels set and creates a new entry in 
its Bindings table. 

Inter-node channel bindings are dissolved in a similar 
way by sending unbind requests instead of bind requests to 
the relevant INCH components.  

Requests for connection change and the corresponding 
acknowledgment messages may be lost when transmitted 
by radio. The INCH propagates exceptions to the callers of 
connect and disconnect operations unless appropriate 
acknowledgements have been received. Since an 
application may choose to repeatedly execute connect and 
disconnect operations until no exceptions occur, the 
operations are idem-potent and the INCH sends an 
acknowledgement when it receives requests to connect an 
already connected channel or disconnect a channel that is 
not connected. 
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Figure 11. Channel Exposure and Binding 

 



4.3.5 Sending Data 
As described above, the INCH repeatedly performs a 

non deterministic select on all outgoing channels from its 
local_component_channels set each of which is connected 
to an internal component channel. When a datum is 
received from a component, the INCH iterates over the 
bindings for this channel in its Bindings table and attempts 
to send the datum to the appropriate destination node and 
channel. The INCH registers success once an 
acknowledgement is received from the corresponding 
INCH. Alternatively, the INCH registers failure by 
propagating an exception to the sending component if an 
acknowledgment is not received.  

4.3.6 Remote Synchronisation 
With intra-node, inter-component communication, the 

communicating parties handshake and exchange data 
contemporaneously. Such instantaneous synchronisation is 
not possible with inter-node and potentially multi-hop 
synchronisation. A mechanism is therefore required that 
permits a component to synchronise with a remote 
component via the INCH proxy components when 
communicating over inter-node channels. Consequently the 
implementation of outgoing channels associated with the 
INCH delay handshaking until either a timeout or 
acknowledgement have been received. If an 
acknowledgement is received the remote INCH has 
delivered the datum to the remote component and the 
handshake completes releasing the blocked sending 
process. Otherwise, if the timer expires  
prior to an acknowledgement being received, a 
SendStatusUnknownException event is propagated to the 
sender.  

4.3.7 LSA-based Multi-hop Routing 
The inter-node channel implementation incorporates 

multi-hop routing of data packets on minimum hop paths. 
Dynamic discovery of routing information is based on link-
state advertisement (LSA) [19]. We chose an LSA-based 
approach over alternatives such as AODV [20] since 
communication links may not always be bi-directional. 

In our implementation time-stamped link-state 
information is periodically disseminated to the network by 
the INCH components using Rime’s Identified Broadcast 
primitive. The INCH components update their map when 
newer information is received from the network. Link-
failure on an incoming link is recorded when link-state 
broadcasts are not received from the corresponding 
neighbour over a certain number of link-state cycles (in the 
current implementation 10). 

The frequency with which link-state is disseminated is 
set once and remains fixed, at twice per minute, in our 
current implementation. However, a minor change would 
permit the dissemination frequency to be dynamically 
adapted in response to apparent stability or changes in 
network topology. For example, the frequency may be 

reduced to conserve energy when the network topology 
appears to be stable at the expense of increasing the 
network’s response time to link failure. When new 
topology information is detected, the dissemination 
frequency may be increased to support fast dissemination 
of the information to the network. 

Whenever an INCH component sends data to another 
node, it uses Dijkstra’s algorithm [21] to search its link-
state map to find the next hop in a minimum hop path to 
the destination and sends the data to the next hop. INCH 
components along the minimum hop path examine a 
packet’s destination address and forward the packet to the 
next hop in the network until it arrives at its final 
destination. The packet payload is only de-serialised by the 
INCH on the destination node. That way, only the source 
and final destination nodes for any transmission require the 
marshalling code for the packet payload. 

When a route to the destination node cannot be found 
according to a node’s link-state map, this information is 
propagated to the sending process via a 
NodesUnreachableException value as described in section 
3.5.4 above. 

4.3.8 Discovery Mechanisms 
The getNeighbours and getNeighboursOf operations 

return an array of addresses representing nodes for which 
the node in question either has an incoming or outgoing 
direct link according to the local INCH component’s link-
state map. The operation getNumberHops returns the 
length of the minimum hop path obtained through 
searching the link-state map for the given source and 
destination nodes. 

The getPublicChannels operation returns the content of 
this node’s Public Channels table stored in the local INCH. 
Executing the getPublicChannelsOf operation causes the 
INCH to send a suitable channel query to a remote INCH 
component and report the returned results or an empty 
array if no results were obtained.  

Finally, executing the findNodesPublishing operation 
causes the INCH component to send a suitable query for 
the specified public channel to all reachable nodes and 
report the addresses of nodes which made suitable replies. 

5. Application Simulation 
In the following we illustrate the capability for Insense 

applications to autonomously configure and self-heal using 
a simulation.  

5.1 Deployment 
A sample deployment of the components shown in 

Figure 7 is simulated using Cooja (the Contiki Os Java 
simulator) [22]. That is, the application components are 
compiled down to executable MSP430 code and linked 
with a Contiki system image and the Insense runtime 
library for the TMote Sky platform. The executable system  



 
Figure 12. Node Deployment 

images are then associated with simulated TMote Sky 
nodes running on the Cooja simulator. The sample 
application deployment is shown in Figure 12. 

Instances of the Sink component (shown in Figure 5) 
are deployed on nodes 1 and 2. An instance of the 
TempBinder component (from Figure 9) along with its 
associated TempSource component (from Figure 8) is 
deployed on node 3. The spacing between nodes 1, 2, and 3 
is such that intermediate nodes 4 and 5 are necessary to 
route both application data and data resulting from 
discovery and connect operations between the nodes. 
Nodes 4 and 5 do not contain any user-defined Insense 
components. Instead, they contain runtime components, 
including the Radio and INCH components discussed in 
sections 4.3.1 and 4.3.2 respectively, which are necessary 
to support the application’s inter-node channel 
communication. 

5.2 Application and System Settings 
The TempBinder component is scheduled to conduct a 

search for sinks every two minutes (specified by the call to 
periodicEnSchedule) when the TempSource component is 
not connected. When connected, the TempSource 
component is set to take a temperature measurements every 
minute (as specified in the constructor in Figure 9) and 
send the measurements to the sink.  

As described above, the INCH component is en-
scheduled to disseminate link-state to the network twice a 
minute and the component’s counter for detecting failed 
links is set to 10. An incoming link from node N will thus 
be deemed to have failed when no link-state advertisement 
is received from node N in 10 cycles, i.e. 5 minutes.  

5.3 Self-configuration and Self-healing 
In the simulation, the nodes establish a common view of 
the network topology after 5 minutes. When the 
TempBinder component next runs after the network 
becomes stable, it successfully discovers the “sink” channel 
exported by the sink on node 2. In this particular example 
the TempBinder does not discover the “sink” channel 
exported by the sink on node 1 (as it does not receive an 
acknowledgement). The TempBinder connects the 
TempSource component on node 3 to the sink instance on 
node 2, thereby completing the application configuration. 

 

TIME:375774 ID:3 tb: bound 
TIME:378578 ID:2 sink got reading 24.00 
TIME:379280 ID:3 ts: send ok 
<node 5 removed> 
TIME:428757 ID:3 ts: send unknown 
TIME:488342 ID:3 ts: send unknown 
TIME:548736 ID:3 ts: send unknown 
TIME:608663 ID:3 ts: send unknown 
TIME:665047 ID:3 ts: send unreachable 
TIME:665050 ID:3 tb: link broken 
TIME:665052 ID:3 tb: try next sink 
TIME:857628 ID:3 tb: bound 
TIME:857692 ID:1 sink got reading 24.00 
TIME:858196 ID:3 ts: send ok 

Figure 13. Cooja Log File 
Figure 13 is an extract of the log file produced by Cooja 

and shows the simulation time in milliseconds, the node 
number, and the output on the serial line (from the 
PrintAny statements) for all nodes in the network. After the 
TempBinder component instance tb establishes the inter-
node channel connection, the sink instance on node 2 may 
be seen to receive a simulated temperature reading of 24.00 
degrees Celsius. The synchronisation between the source 
and the sink may be observed in that the TempSource 
component instance ts reports success after the datum is 
received by the sink instance. 

At time 379280, we have forcibly removed node 5 so 
that the TempSource on node 3 is no longer connected to 
the sink on node 2. The log in Figure 13 shows that no 
more readings are received by the sink on node 2 after the 
node is removed. Following the removal of node 5, the  
sending component on node 3 receives 
SendStatusUnknownException exceptions which causes the 
component to write “send unknown” messages to the log. 
After 5 minutes, the INCH throws the exception 
NodesUnreachableException to the TempSource instance ts 
at which point it sends a message on its error channel. 

Finally, on receipt of the error notification, the 
TempBinder unblocks from the receive oops statement and, 
having reached the end of the for-loop, executes the next 
iteration of its behaviour loop. A connection to the sink on 
node 1 is re-established after the next discovery phase 
completes. Following reconnection, the log shows the sink 
on node 1 has successfully received a temperature reading. 

5.4 Space Requirements 
The space requirements of the application components 

used in the simulation are as follows. The code size for the 
Sink component is 800 bytes and each instance uses 64 
bytes of RAM, the code size for the TempBinder is 1748 
bytes and 104 bytes of RAM are required, and the code 
size for the TempSource component is 1150 bytes and 118 
bytes of RAM are required. The sizes of the Insense 
Runtime library and the Contiki operating system code 
included by the linker for the above application are 
approximately 22kB each. Thus the total size for the 
application executing on nodes 1 and 2 is 45kB and the size 
of application executing on node 3 is 47kB. The code for 



the INCH component, radio component, marshalling code, 
and half-channel implementation occupy ca. 8.5kB, 1.2kB, 
3.5kB, and 2kB respectively (i.e. ca. 70% of the runtime). 

It can be seen that the RAM usage of Insense programs 
are modest whilst the code footprint is a little large. The 
code generated by the Insense compiler allocates all the 
space required for Insense components to execute 
(including stack space). At first this appears to fit well with 
the stackless model used by Contiki proto-threads. 
However, Contiki processes are defined using macros and 
may not be dynamically allocated. Furthermore, if 
procedures or dynamic processes yield, some mechanism 
must be implemented to save their state. To implement 
Insense such mechanisms must be provided by a 
combination of the Insense runtime and the generated code. 
Combined, these contribute to the large footprint of 
compiled Insense components. 

6. Conclusions and Further Work 
The main contribution of this paper is to present a high-

level component-based service-oriented model of 
distributed sensing in WSNs supporting inter-component 
communication over channels. In this model, the 
components of a sensing system may discover and access 
services by connecting to channels associated with other 
components in the network. The self-healing of 
applications is supported by an exception model that 
permits applications to detect channel communication 
anomalies and by language mechanisms that permit a 
distributed application to be dynamically re-wired.  

We have demonstrated the efficacy of this model with a 
demonstrable implementation on the TMote Sky platform 
running Contiki. The Cooja simulation results demonstrate 
the ability of applications to autonomously configure and 
self-heal. The use of Contiki has permitted a running 
implementation of Insense. However, as described above it 
is not ideal. This is not to belittle the Contiki environment, 
which we have found to be extremely robust and well 
engineered – we are using it in a manner in which it was 
never intended.  

To address the inadequacies in the runtime platform for 
Insense, colleagues at the University of Glasgow have 
initiated the development of a custom operating system for 
Insense in which component creation, and inter-component 
channel communication are factored out into the operating 
system [23]. We believe that this will demonstrate that 
Insense can be executed with a low code and data footprint 
given the right runtime environment. 
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