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Abstract 

AquaCat is a low-cost radar-based system capable of 

discriminating between a range of liquids and powders.  

This work builds on techniques developed for RadarCat, 

a similar radar-based system that has shown high 

accuracy in the classification of physical objects.  

 

AquaCat records radar signals returned from various 

substances, building up a dataset of labelled signal 

traces.  These are used as input into a machine 

learning system that produces a predictive model 

capable of identifying new examples of these 

substances.  We present a study assessing the accuracy 

of the system in recognizing water, various sugars and 

sugar solutions, iron sulphate, and various alcoholic 

spirits.  For this test set, AquaCat achieved a mean 

accuracy of 78.33% and correctly identified the 

powders 100% of the time.  We see applications of the 

technology in fields such as chemical manufacturing, 

public health, and environmental monitoring. 
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Introduction 

The AquaCat project makes use of low-cost 

miniaturized radar technology and machine learning to 

build a system that can reliably discriminate between 

different liquids and powders.  The project builds on 

RadarCat, a radar-based object classification system 

developed in the University of St Andrews School of 

Computing’s Human-Computer Interaction Group 

(SACHI) [1].  This paper presents an extension of the 

capacities of such as system to the discrimination of 

liquids and powders.  This extension has a wide range 

of applications in domains such as; control systems in 

food and pharmaceutical production, the non-

destructive identification of drugs and alcohol (in both 

law enforcement and public health), the monitoring of 

water pollution levels in rivers, and the automated 

assessment of drinking water quality. 

  

In this position paper, we will discuss the initial results 

of a study designed to test the capacities of a system 

like RadarCat, repurposed to classify liquids and 

powders.  As far as we are aware this is the first 

attempt to use radar technology with machine learning 

to perform such a task.  As such; 

1. We outline the structure of a system designed to 

classify liquids and powders. 

2. We present the results of a study reporting the 

level of accuracy achieved by the system when 

training and classifying different liquids and 

powders. 

We conclude this paper with a brief discussion of the 

results and the possible applications of the technology. 

AquaCat uses a radar systems from Infineon 

Technologies based on their BGT60 millimeter-wave RF 

transceiver. During development, we also experimented 

with Google Soli [3].  Initial testing suggests the Soli 

exhibits similar levels of accuracy and patterns of 

confusion to the BGT60 based system, however a 

detailed comparison is beyond the scope of this study.  

For the work present here, the BGT60 based system 

was selected for reasons of availability. Both systems 

are based on Frequency Modulated Continuous Wave 

(FMCW) radar principles [4] and use identical frequency 

bands.  We expect the results of this study to be 

reproducible using the Soli. 

Background Work 

RadarCat [1] demonstrates the ability of millimeter-

wave radar systems when combined with machine 

learning to discriminate between a wider range of 

physical objects.  Part of that work hinted at the 

possibility of extending the system to discriminate 

different kinds of liquids non-destructively.  RadarCat is 

based on Google’s Soli [3], a system initially designed 

for capturing subtitle figure motions for use in gesture 

recognition.  It is expected that Soli, or similar 

technologies, will be embedded into a wide range of 

devices in the near future, for example in mobile 

phones, making miniaturized radar a ubiquitous and 

cheap technology. 

 

Current liquid sampling and analysis techniques, such 

as inductively coupled plasma mass spectrometry 

(ICPMS) [5], require expensive specialist equipment 

and are very often destructive in nature.  Similar 

spectroscopic methods, such as near-infrared 

spectroscopy [6], are often employed to analyses 

pharmaceutical and food products. 

 

  

 

Figure 1 – Polystyrene cuvettes 

with liquid and powder samples. 

 

Figure 2 – Infineon BGT60 based 

radar system in custom housing. 

 

Figure 3 – Custom mount holds 

sample and radar in place to 

reduce differences between 

readings. 

 



 

Methodology 

Our experiment was designed to test the capacity of a 

radar and machine learning based system to 

discriminate between different liquids and powders.  In 

selecting our test substances, we applied the following 

criteria; the substances must be safe to work with in a 

non-specialist laboratory setting, the substances must 

be readily available, and the substances must have 

relevance to a proposed application domain.   

 

Applying these constraints, for liquids we selected pure 

water, dextrose solutions, sucrose solutions, and three 

kinds of alcoholic sprit (vodka, whiskey, and rum).  

These were selected for their relevance in public health 

applications.  Aqueous solutions of dextrose and 

sucrose were each tested at two different 

concentrations: 1-Molar (i.e. 2.5millimoles dissolved in 

pure water to achieve a total sample volume of 2.5ml) 

and at their respective saturated concentrations.  For 

powders, we tested dextrose, sucrose, and iron 

sulphate – a common garden fertilizer, selected as a 

possible pollutant that was safe to handle. 

  

Standardized polystyrene cuvettes, with a capacity of 

2.5ml, were used as containers for the test liquids 

(figure 1 shows these labelled and arranged into a 

matrix for testing).  To accurately characterize the 

liquid samples, with a consistent radar background 

signal, a mount was designed and 3D printed (show in 

figure 2).  This mount holds the radar system and a 

single cuvette tightly in a relative position that can be 

easily reproduced as different samples are measured. 

  

Data collection was undertaken by sampling 4-channels 

from the Infineon radar system.  Each channel 

represents the signal received by one of the systems 

four receive antenna, labelled Rx1, Rx2, Rx3, and Rx4. 

The system continuously emits a radar wave, 

repeatedly ramping its frequency from 57-64GHz.  

These individual frequency ramps are called Chirps. We 

configured the system to emit 200 chirps-per-second 

(providing a good tradeoff between temporal-resolution 

and system heat).  The signal returned from each chirp 

is convolved with its outputted signal to produce a 

signal showing the differences at various time points 

during the frequency ramp.  This is known as the 

intermediate frequency and referred to as the raw 

signal.  A line graph showing a representative trace of 

this signal can be seen in figure 4. 

 

 

Figure 4 - Example of 4-channel intermediate frequency 

function from the Infineon radar system. 
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These signals were recorded 100 times in 0.5s to 

produce one sample.  This process was repeated 30 

times for each class of substance.  This was done to 

ensure that enough samples were recorded to 

compensate for small differences in positioning between 

sampling for training and sampling for recognition.  

Each sample was associated the name of the liquid that 

was sampled and this was used create the set of 

classes for use during machine learning. 
 

When training AquaCat, we spilt our dataset into 

training data and validation data.  90% of samples 

(324) were used to train a neural network with 3 

hidden layers, each containing 128 artificial neurons.  

The system was implemented using the Scikit Learn [7] 

machine learning toolkit for Python.  The remaining 

10% (36) were used as a validation set – to 

automatically assess the performance of the network.  

This process was repeated four times with different 

training and validation sets and the best model 

selected. 

 

Once the network had been trained, it’s accuracy was 

assessed manually by having it predict the labels for 

the samples in on an independently produced testing 

set.  The test set consisted of 15 samples for each class 

of substance (180 samples total). These were 

generated using new samples of the substances in 

different cuvettes than the training data.  These results 

are shown in the next section.  

 

 

Figure 4 - Confusion matrix showing the results of our study.  Rows show which substances were predicted by AquaCat when it was 

shown actual substances.  Empty cells indicate that substance was predicted 0 times.   
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Results 

Figure 4 is a confusion matrix [8] showing the results of 

this preliminary study.  As can been seen from the 

diagonal axis, the system performed with high accuracy 

when discriminating between the powders and most of 

the liquids.  The system achieved a mean accuracy of 

78.33%.  Note that the powders were correctly 

discriminated 100% of the time. 

Discussion and Conclusion 

These initial results suggest some interesting capacities 

and limitations.  The empty cuvette (labelled air) and 

pure water were correctly identified every time.  This 

suggests that detecting the presence of any liquid or 

impurities in water might be possible with high 

accuracy.  However, the sugar solutions and alcoholic 

sprits were often confused suggesting that identifying 

specific impurities or pollutants might be challenging.  

The system showed high accuracy in discriminating the 

powdered forms of dextrose, sucrose, and iron sulfate.  

This may be due to the powders having different grain 

sizes and thus having different substance specific 

scattering and absorption properties.  Further physical 

and chemical testing is required to establish this.   

High accuracy non-destructive powder classification 

could have important applications in chemical and drug 

production to control manufacturing systems or as part 

of a quality control process. The non-destructive 

identification of illicit drugs has applications in public 

health and law enforcement.  We might envision a 

deployment of the AquaCat technology being used to 

perform rapid testing on unknown substances as part of 

a customs process.  Another possibility would be to use 

the system for the rapid testing of urine samples.  This 

could be expanded to a network of low-cost sensors in 

a city's wastewater system, allowing public health 

agencies to monitor drug use and map it 

geographically. 

One possible long-term application is to allow 

environmental researchers to make cheaper, faster, 

and thus more numerous measurements of water 

pollution levels in the field and therefore create a richer 

data set.  When miniaturized radar technologies are 

deployed into smartphones and other devices, AquaCat 

could be available to a much larger section of the 

population.  This will enable the collection of crowd-

sourced pollution data over a large geographic area and 

over a long time.  By having a higher number of 

samples over a longer period, policymakers will gain a 

better understanding of the distribution of pollutants 

and their sources, allowing them to better target 

regulatory interventions and infrastructure 

improvements.   

In the future, we intend to test the system with a wider 

range of chemicals, both in liquid solutions and in their 

powdered form.  We will be looking to measure both 

the accuracies with which different chemicals can be 

detected, and at what concentrations accurate 

detection is possible.  With a wider map of the possible 

substances and concentrations, we will be able to 

narrow down the possible use-cases and move onto 

creating specific deployable solutions. 
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