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Figure 1: Smart devices in our environment are visually recognized by a smartphone, and their appropriate interaction primitives
are mapped to gestures recognized by an electromyography (EMG) band.

ABSTRACT
Augmenting people with wearable technology can enhance
their natural sensing, actuation, and communication capabil-
ities. Interaction with smart devices can become easier and
less explicit when combining multiple wearables instead of
using device-specific apps on a single smartphone. We demon-
strate a prototype for smart device control by combining quasi
real-time visual device recognition on a smartphone and EMG-
based gesture recognition on a Myo armband.
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INTRODUCTION
Appliances in our homes are becoming smarter with improved
sensing, actuation, and computing capabilities as well as con-
nectivity to other devices, to the Internet, and to the user’s
personal devices [4]. We can, for example, control the color
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and brightness of a smart light bulb, switch channels on a
TV, or remotely monitor a heating system using smartphone
apps. The advantages of such “outsourced” user interfaces
are smaller cost, overcoming the lack of space on devices to
display all the features, the ability to control remotely, and
simple feature updates via software, to name only a few.

At the same time, potentially a multitude of wearable devices
(smartwatch, smartglasses, smartphone, etc.) can augment
users with more advanced sensing, actuation, and communica-
tion capabilities. The main advantage of wearables compared
to other forms of control is that they share the user’s egocentric
perspective: smartwatches feel how we move, smartglasses
see what we see, and smartphones can extract many other
contextual cues. Our main interest is how body-worn object
recognition and input devices, so far mostly disconnected
cyber-physical systems, can seamlessly cooperate in order to
better assist the user in everyday tasks.

We present a method to select and control different smart
objects by combining off-the-shelf wearables. Objects of
interest are automatically recognized in first-person camera
images by a convolutional neural network (CNN) running on
the user’s smartphone. From the range of detected devices, the
user can select and control appliances via gestures recognized
by a Myo EMG armband1.

1https://www.myo.com
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DEVICE RECOGNITION FOR INTERACTION
Object recognition from an egocentric perspective has been
applied in previous research to detect the devices a user wants
to interact with, in order to make the interaction more natural
and intuitive. Mayer et al. use visual object recognition on
a smartphone in order to externalise a smart device’s capa-
bilities to a graphical representation on the smartphone [5].
Similarly, in Snap-To-It [2] a photo of a device taken with a
smartphone is analyzed and the location-wise nearest device
matching the picture is selected. A graphical user interface on
the smartphone then shows the possible actions of that device.
InSight [1] is a system which uses an eyewear-mounted IR
laser emitter and IR sensors attached to the smart devices. The
laser approximates the user’s gaze and makes it possible to
detect the devices the user’s gaze falls upon.

SYSTEM
Our system consists of two parts: first, a smartphone for ob-
taining a video stream from an egocentric point of view, for
performing the CNN computations, for communication with
the smart devices, and propagating the gesture commands and
second, a Myo armband for gesture recognition.

Object Detection
To perform the detection of the smart devices, we retrain a
pre-trained CNN [3]. The main idea is that the convolutional
layers trained on a large dataset such as ImageNet, consisting
of millions of images, are strong and robust general-purpose
visual feature detectors. Consequently, it may not be necessary
to train these layers when adapting to a new set of images and
classes, but to only train the top softmax layer.

For retraining, we use an ImageNet pre-trained Inception V1
network2 (also known as GoogLeNet [6]). We aim at detecting
devices from five classes: smartphones, laptops, LIFX3 light
bulbs, coffee machines, and sound systems. The network
consists of nine inception modules, which contain different
convolution operations. As in the Tensorflow Android demo4,
featuring a classifier for ImageNet classes, we only use the first
three modules (up to inception 4a) and an additional ReLU-
layer. We then add a softmax layer on top to adapt the network
to our five classes. After stripping the network from all the
unused layers, we achieve a model size of about 12 MB, which
could easily be shipped within a mobile app. As framework
for running the network on the smartphone we use Tensorflow.
As image dataset, we use around 100 images per class, which
we obtain from short self-taken videos and split them into
training (80%), validation (10%), and test (10%) set. We train
for 200 iterations with a batch size of 50. The whole retraining
process only takes about three minutes on an Intel i7-6600U
CPU. We reach a test accuracy of 100%. As a test device, we
use a Nexus 5X. The inference time for a single image (input
resolution 224x224) is about 550ms on average, i.e., an update
rate of about 2 Hz. However, we always show the current
camera view, so the user does not experience a delay.
2https://storage.googleapis.com/download.tensorflow.org/
models/inception5h.zip
3https://www.lifx.com/
4https://github.com/tensorflow/tensorflow/tree/master/
tensorflow/examples/android

Gesture Control
We use a Myo armband for gestural input to the recognized
smart device. The armband contains eight EMG (electromyo-
graphy) sensors, which measure the action potential from the
muscles in the forearm. These electrical potentials correspond
to muscle contractions, hence it is possible to derive the cur-
rent hand gesture from the EMG measurements. Additionally,
there is a nine-axis IMU. The Myo detects a pre-defined set
of five gestures, making a fist, spreading one’s fingers (fin-
gers_spread), waving towards (wave_in) and away (wave_out)
from one’s body, and double tapping thumb and middle finger
(double_tap). The Myo communicates to a listening device via
Bluetooth. It is also possible to obtain the raw sensor readings,
so one can create custom gestures. An advantage of the Myo
is that it can be worn over a long period of time and the hand
does not have to be in the field of view of any camera or other
device.

Interaction with Smart Devices
In this work, we use a smartphone as the central hub. After
the Myo armband is connected to the smartphone, the user can
initiate the object detection performing the double_tap gesture.
Subsequently, a camera view is opened and the incoming
images are classified. The current labels are displayed as an
overlay. The camera on the smartphone could be replaced by
a head-mounted camera, e.g., a Google Glass. As soon as the
user decides to stop the detection phase by executing the fist
gesture, a connection to the device currently recognized is set
up and the user may begin to interact using the Myo gestures.
If the detection results are ambiguous, our app displays these
and lets the user choose the correct device using the wave_in
and wave_out gestures for left and right and the fist gesture
for selection.

APPLICATIONS

Figure 2: The user interacts with the LIFX light bulb by using
the smartphone to detect it and then controlling the light color
with the wave_in and wave_out gestures.

Currently, we have two demo applications. First, connecting
to another smartphone via Bluetooth and transmitting the Myo
gestures as shown in Figures 1c and 1d and second, connect-
ing to a LIFX light bulb via Wi-Fi and using the wave_in
and wave_out gestures for selecting colors as shown in Fig-
ure 2. We demonstrate the described applications and provide
a recipe to other researchers of how to setup and retrain a CNN
and how to incorporate it in an application for interaction.
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