

Wider, Not Faster

Colin Perkins

http://csperkins.org/

Talk Outline

- Trends in semiconductor devices
- Implications for networking
 - Network layer issues
 - Transport protocols
- Impact on applications

Trends in Semiconductor Devices

- Exponential growth in semiconductor density
- Corresponding growth in CPU performance
 - More logic \rightarrow better algorithms
 - Bigger caches; more memory
- Router vendors benefit from the same curve
 - Larger routing tables fit in fast, on-chip memory

Source: Intel Tera-Scale Computing Research Overview

Clock Rate and Power Consumption

So what? We're network researchers...

- Consider router architecture
 - Interconnect and switching fabric optical
 - Routing and forwarding logic uses semiconductor devices

- Limited by power consumption:
 - Performance of routing logic
 - Core network links run at 40Gbps, whereas CPUs are power limited at 3-4GHz...
 - All-optical routers not (yet?) practical

Wider, Not Faster

 CPU designers reducing clock speed and introducing parallelism ("multicore")

- Same will *inevitably* happen in networking
 - Benefit due to reduced power consumption will outweigh complexity of using several slow links in place of a single fast link

Implication: Richer Network Connectivity

Easy to handle; only local impact on routing

Hard to handle; globally visible in topology

Problem: Routing Table Growth

- Hierarchical aggregation of routing prefixes requires a mesh-like core, with tree-like edge networks
- Trend is making the edges more mesh-like → aggregation will fail, since hierarchy violated
- → Can we route without aggregation? (Compact routing)
- → Can we aggregate better?

(Multiple prefixes per AS, aggregating per upstream connection; locator-identifier split)

Opportunity: Additional Forwarding Cycles?

- Introducing link parallelism will greatly increase routing complexity
 - Step-change in table size and churn
 - Re-think of the network architecture
- Further increases less problematic
 - Network will be settled in new equilibrium
 - What is the trade-off between power to drive a link and to make forwarding decisions?
 - Can we introduce more parallelism than needed, while keeping line card processor performance, to give more cycles per packet while still saving power?
 - May allow very interesting network architectures...

Implications for Transport: Multi-path

- To make effective use of capacity, transport protocols must use multiple paths
 - How to see multiple paths?
 - Is multi-homing sufficient? Or is visibility into the core (source routing) needed?
 - Multi-path congestion control
 - Multi-path TCP
 - Layered and multi-description coding for real-time media → what transport? how to adapt? usability?
 - Effects on traffic engineering and load balancing
 - Likely solve mobility as a side-effect

Implications for Transport: Reliability

- Multi-path transports can build on reliable multicast protocols
 - Responses from multiple paths vs. responses from multiple participants; scaling techniques, avoiding implosion
 - Massive re-ordering at transport layer
 - Application level framing
 - De-coupling transport from path choice
- Managing delivery on a single path insufficient for reliability

Implications for Applications

- Concurrency is going to be an issue for the network, as well as within the end-system
 - APIs will evolve, expose multi-path behaviour
 - Berkeley Sockets API likely insufficient

- What will be the typical approach for writing networked applications?
 - Should be coding in Erlang rather than C/Java?

Conclusions

- Trends in semiconductor device behaviour
 → increased parallelism in network
- Expect this to cause a rethink in network and transport protocol design

• How to evolve network and applications?