

ILNP in a nutshell

http://ilnp.cs.st-andrews.ac.uk/

Saleem Bhatti School of Computer Science University of St Andrews

ILNP Identifier-Locator Network Protocol

1.Why?

- 2. What?
- 3. How?
- 4. Where?

The changing world of IP

- How to support a harmonised solution to many network functions in a scalable manner?
 - Multi-homing (host and site).
 - Mobility (host and network).
 - Multi-path capable transport protocols.
 - Localised addressing (NAT).
 - Traffic engineering capability.
 - Packet-level, end-to-end security.
 - Virtual machine migration/mobility.
- Current solutions for such functions remain disparate, do not function well together and/or may not scale well.

Naming Architecture: IP vs ILNP

Protocol Layer	IP	ILNP
Application	FQDN or IP address	FQDN (RFC1958)
Transport	IP address (+ port number)	(Node) Identifier (+ port number)
Network	IP address	Locator
(Interface)	IP address	(dynamic mapping)

Entanglement (3)

Separation ©

FQDN = fully qualified domain name

ILNP Identifier-Locator Network Protocol

1. Why?

2.What?

- 3. How?
- 4. Where?

Identifier-Locator namespaces in ILNP

- Locator, L:
 - Topologically significant.
 - Names a (sub)network (as today's network prefix).
 - Used only for routing and forwarding in the core.
- (Node) Identifier, NID:
 - Is not topologically significant.
 - Names a logical/virtual/physical node, does not name an interface.
- Upper layer protocols bind only to NID.

Namespaces & namebindings

IP – static ILNP – dynamic

animated knot from http://meritbadge.org/wiki/index.php/Knot#Granny_knot

ILNP: Locator Properties

- Locator names an IP (sub)network.
- Locator is equivalent to an IP Routing Prefix:
 - Multiple Locators can be used simultaneously.
 - Nodes can change their Locator values during the lifetime of an ILNP session.
 - Enables "NAT", mobility, multi-homing, end-toend IPsec, site-controlled traffic engineering, etc.
- Locators NEVER used for transport layer state,
 e.g. by TCP, UDP, SCTP, etc.
 - end-to-end state now independent of topology

ILNP: Identifier (NID) Properties

- NID names a node, not an interface
- Remains constant during the lifetime of a transport session
- Nodes may use multiple NIDs concurrently:
 - only one NID for a given transport session
 - NIDs can be stable over time
- Other IPv6 ID formats supported by ILNP:
 - e.g. Private (RFC4941), CGA (RFC3972)
- Only NID is used by IPsec, TCP, UDP, SCTP, etc.

ILNP Identifier-Locator Network Protocol

- 1. Why?
- 2. What?

3.How?

4. Where?

ILNP: Engineering

- Could have gone "clean slate" ... not practical.
- Main architectural ideas can be applied as extensions to both IPv4 and IPv6:
 - current RFCs cover both
- Focus here is on IPv6, as the engineering is cleaner, but IPv4 is also possible.
- ILNP extensions to IPv6 ILNPv6:
 - Routers see an ordinary IPv6 packet.
 - ILNPv6 hosts see an ILNPv6 packet.

ILNPv6

- A set of extensions to IPv6:
 - Same packet format as IPv6, with extensions
 - No changes required in the IPv6 routers
 - Incrementally deployable on IPv6 networks
 - Backwards compatible with IPv6 devices
- Split 128-bit IPv6 address:
 - 64-bit Locator (L64) (sub)network name.
 - 64-bit Identifier (NID) node name.
 - encode NID and L64 into existing IPv6 packet

IPv6 addresses and ILNPv6 I-L vectors

IPv6 address (as in RFC3587 + RFC4291): Unicast Routing Prefix | <u>Interface</u> Identifier **IPv6** routing (address) prefix same syntax, different semantics ILNPv6 I-L vector (as in RFC6741): 64 bits | 64 bits Locator | <u>Node</u> Identifier (NID) same syntax and semantics as these bits only examined and IPv6 routing (address) prefix acted upon by end systems so IPv6 core routers work as today

ILNPv6 packet header – host view

```
|Version| Traffic Class |
      Payload Length
Source Locator
               Source Identifier
               Destination Locator
             Destination Identifier
```

Example 1: Localised Addressing (aka NAT)

NAT in IPv4 and IPv6

NAT:

- single address shared amongst many hosts (use of port numbers for multiplexing)
- End-to-end integrity lost, as identity namespace has a discontinuity at the site border router (SBR), impacting other end-toend functions (e.g. IPsec)
- SBR may have to perform other functions also

NAT equivalent in ILNPv6

<srcL=L₁,dstL=L_R>
<srcNID=I₁, dstNID=I_R>

- Localised 'addressing' is a feature not a hack:
 - Locator is **not** part of the end system transport session state.
 - ◆ L₁ as in RFC4193 (ULA)
 - end-to-end view
- SBRs perform Locator rewriting without
 affecting end-to-end state.

Simples!

Example 2: Mobile Networks

Mobile networks in ILNPv6 [1]

- Locator re-writing can 'hide' site movement from internal nodes.
- SBR changes Locator value as the mobile network moves:
 - Sends Locator Update (LU) messages to correspondents.
 - Updates DNS with new Locator value

Mobile **networks** in ILNPv6 [2]

 Network layer softhand-off possible.

Requires 2+ radio
 channels / interfaces.

 SBRs handle Locator rewriting + forwarding as required.

ILNP Identifier-Locator Network Protocol

- 1. Why?
- 2. What?
- 3. How?

4.Where?

ILNP: Status (Jan 2013)

- 8+ years of peer-reviewed architectural research:
 - Papers and talks available at ILNP web site http://ilnp.cs.st-andrews.ac.uk/ (also advert for PhD student)
- 9 Experimental status RFCs (IRTF RRG):
 - RFCs 6740-6748 (Nov 2012)
- PhD students:
 - Bruce Simpson (funding: Cisco, USA)
 - Ditchaphong Phoomikiattisak (funding: Thai Govt)
 - TBA 1 (funding: Time Warner Cable, USA see advert)
 - TBA 2 (funding: major company, USA)
- Open source prototypes from University of St Andrews:
 - FreeBSD "ping demo" available soon.
 - Linux "ping demo" in ~12 months.

Thank you! Questions?

- ILNP further information:
 - see http://ilnp.cs.st-andrews.ac.uk/ for links to RFCs, papers and talks
 - ... or accost me in the time honoured manner

- Reading start off with:
 - "Evolving the Internet Architecture Through Naming",
 IEEE JSAC, Oct 2010, (7 pages) http://dx.doi.org/10.1109/JSAC.2010.101009
 - RFC6740, Nov 2012 http://tools.ietf.org/html/rfc6740
 RFC6741, Nov 2012 http://tools.ietf.org/html/rfc6741