
Unification of Publish/Subscribe Systems and
Stream Databases

The Impact on Complex Event Processing

Joe Sventek and Alex Koliousis
University of Glasgow

What’s the problem?

• An increasing demand for complex event processing
of ever-expanding volumes of data in an every-
growing number of application domains

• Many of these scenarios require the ability to retain
local state between constituent events of a complex
pattern and access to relevant persistent state

• The sheer volume of data to be processed demands
that we revisit monitoring architectures, especially in
extremely time-sensitive domains – i.e. performance
is of increasing importance

SCONE 8 February 2013 2

What’s current practice?

• Stream database management systems
– with user-defined aggregate functions (e.g. Aurora)
– with non-deterministic finite automata (e.g. Cayuga)
– with support for multiplexing/demultiplexing packet

streams (e.g. Tribeca)
– with two-level query architecture to push logic closer

to high rate sources of data (e.g. Gigascope)
– others that dispense with SQL altogether

SCONE 8 February 2013 3

The Homework Project

• Create a home network router that passively monitors all
traffic in the home network, replacing the commodity router

• Make this monitored data available in real-time to display,
persistence, and reaction applications

• Provide mechanisms for detecting complex event patterns in
the monitored data and that can trigger management policies

• Provide display and control functionality to home users that is
intuitive to navigate and use

• Iterative design, implementation, and deployment strategy

SCONE 8 February 2013 4

Information Plane Architecture

SCONE 5 8 February 2013

Topic-based
Publish/Subscribe

Cache

Persistent,
time-series DB

Persistent
relational DB

Persistence
Application

Population
Application

Population
Application

Population
Application

Display
Application

Reaction
Application

Underlying system

Why something new?

• Initial Homework experience pointed to several needs that
were difficult to meet with any particular stream database
system
– Need for rapid access to persistent data as part of complex event

pattern matching  support persistent relations in the Cache
– Need for periodic. ad hoc, access to most recently received events to

drive user interfaces  provide CQL interface to event data streams
– Need to support programming of logic to detect complex events in

real-time based upon both local and global state  GAPL
– Requirement for maximal flexibility in architecting the monitoring

system

SCONE 8 February 2013 6

SCONE 8 February 2013 7

Underlying Homework system

The Cache

• Topic-based publish/subscribe cache
• pub/sub topics defined as stream database tables

• ephemeral tables in which the primary key is time of insertion
• persistent tables in which the primary key is the first defined field
• tuples in all ephemeral tables are stored in a circular memory buffer
• tuples in persistent tables are stored in the heap

• Ephemeral – continuous, potentially large volume of measurements ⇒
the Cache cannot possibly make it persistent, so don’t even try …

• Real-time ⇒ must optimize use of resources to keep up with the
measurements

• Ordering of tuples in tables is by time of insertion
• Supports stream database view of time-series data
• Innovative approach – “raw” events are aggregated measures

SCONE 8 February 2013 8

Monitoring Applications
• Population – measure some aspect of the system and insert

the resulting measurement data into the Cache.
• Persistence – extract data from the Cache in order to store

that data, or information derived from that data, into the
persistent time-series database and/or the persistent
relational database.

• Reaction – register interest in particular behaviour
patterns; when such a pattern is detected by the Cache, it
notifies the application of the occurrence to enable it to
react to the event.

• Display – extract real-time data from the Cache for display
to a user of the system. These applications may also
extract data from the persistent databases, if necessary.

SCONE 8 February 2013 9

Tables in the Homework cache

• Ephemeral
– Flows (proto, saddr, sport, daddr, dport, npkts, nbytes)
– Links (macaddr, rssi, nretries, npkts, nbytes)
– UserEvents (application, logtype, logdata)
– Sys (message)
– Urls (proto, saddr, sport, daddr, dport, host, URI, cnt)

• Persistent
– Leases (macaddr, ipaddr, hostname, action)
– Devices (macaddr, status)
– Allowances (ipaddr, bytes)
– BWUsage (ipaddr, bytes)

SCONE 8 February 2013 10

SCONE 8 February 2013 11

Logging architecture

Raw event generation
• Link information obtained using libpcap (RadioTap header)
• An additional action in openvswitch passes each packet to a kernel

accumulator, which accumulates the following data:
• Flow records
• Data about the first N packets in each flow
• For HTTP packets, the HTTP request header

• A once per second timer interrupt causes the kernel accumulator to write
accumulated records to three different devices:
– /dev/hwdb0 returns flow accumulations (to insert into table Flows)
– /dev/hwdb1 has statistical information about the first N packets (currently, N =

10) of each flow
– /dev/hwdb2 has http request headers to insert into table Urls

• Population applications simply have reads outstanding on these devices;
when their reads are satisfied, they format insert commands into relevant
tables and then call the Cache

• Lease information is inserted into the Cache by the DHCP module

SCONE 8 February 2013 12

Detecting Patterns

• Events of interest may involve complex combinations of the raw
measurement data that is moving through the pub/sub topics and
persistent relations

• We have defined the Glasgow Automaton Programming Language
(GAPL) for specifying automata; these automata provide an
imperative mechanism for detecting complex patterns.

• A reaction application registers an automaton against the database;
the automaton sends events to the application when such events
are detected

SCONE 8 February 2013 13

Form of an automaton

SCONE 8 February 2013 14

automaton::= subscriptions behavior
 | subscriptions declarations behavior
 | subscriptions declarations initialization behavior
 | subscriptions associations behavior
 | subscriptions associations declarations behavior
 | subscriptions associations declarations initialization behavior

subscription::= “subscribe” <localvar> “to” <TopicName> “;”

association::= “associate” <localvar> “with” <PersistentTableName> “;”

declaration::= variabletype variablelist “;”

Simple examples

SCONE 8 February 2013 15

subscribe e to <topic>;
behavior {
 send(e);
}

Process-based pub/sub broker Stream merge

subscribe s to S;
subscribe t to T;
behavior {
 if (currentTopic() == ‘T’)
 publish(‘U’, t);
 else
 publish(‘U’, s);
}

Simple Automaton

SCONE 8 February 2013 16

subscribe u to Urls;

map url;

initialization {
 url = Map(int);
 insert(url, Identifier('www.google.com'), 0);
 # insert others here
}

behavior {
 if (hasEntry(url, Identifier(u.hst))) {
 send(u.saddr, u.hst);
 }
}

Implementation

• Compiler generates instructions for stack machine
• Each compiled automaton is bound to a separate thread
• When a tuple is inserted into a Table, each automaton thread that

has subscribed to that topic is given access to that tuple and
awakened

• Upon being awakened, the automaton executes its behavior clause
• If the automaton executes a “send” procedure call, this will result in

the arguments being sent as an RPC to the registered reaction
application

• All heap storage associated with local variables is reference-
counted.

SCONE 8 February 2013 17

Language features

• Support for maps, sequences, windows,
iterators, identifiers

• Ability to associate relational table with a map
• Ability to inject additional events into pub/sub

channels
• Ability to send events to registered processes
• Access to timer pub/sub channel

SCONE 8 February 2013 18

Basic Data Types

Type Description

int 64-bit signed integer

real double-precision floating point

tstamp 64-bit unsigned integer (ns since the epoch)

bool true or false

string variable-length UTF8 array

SCONE 8 February 2013 19

Aggregate/Supporting Data Types

Type Description

sequence ordered set of heterogeneous data type instances

map map from an identifier to an instance of the bound type

window collection of bound type instances that is constrained either to a fixed
number of items or a fixed time interval

identifier key used in maps

iterator used to iterate over all instances in a map (keys) or window (data values)

SCONE 8 February 2013 20

Interpreter functions

Map functions

map Map(map.type)

void insert(map, identifier, instance)

void remove(map, identifier)

map.type lookup(map identifier)

bool hasEntry(map identifier)

SCONE 8 February 2013 21

Window functions

window Window(win.type, winconstr, constrval)

void append(window, instance[, tstamp]

real average(window)

real stdDev(window)

Interpreter functions (cont)

Iterator functions

iterator Iterator(map | window)

bool hasNext(iterator)

identifier next(mapIterator)

win.type next(winIterator)

SCONE 8 February 2013 22

Miscellaneous functions

void send(basictype | sequence | window[, ...])

void publish(topic basictype | sequence[, ...]

string currentTopic()

identifier Identifier(basictype[, ...]

string String(basictype[, ...])

void destroy(aggregate.type)

More Sophisticated Example

SCONE 8 February 2013 23

subscribe f to Flows;
associate a with Allowances;
associate b with BWUsage;
int n, limit;
identifier ip;
iterator it;
sequence s;
string st;
behavior {
 ip = Identifier(f.daddr);
 if (hasEntry(a, ip)) {
 limit = seqElement(lookup(a, ip), 1);
 if (hasEntry(b, ip))
 n = seqElement(lookup(b, ip), 1);
 else
 n = 0;
 n += f.nbytes;
 s = Sequence(f.daddr, n);
 if (n > limit)
 send(s, limit, 'limit exceeded');
 insert(b, ip, s);
 }
}

Implementation details

• Cache runs as multi-threaded server on Linux, Cygwin, OSX
• Circular buffer for ephemeral tables configured to retain ~2

hours worth of raw data
• Architecture was particularly focused on minimizing critical

sections between automata threads
• Significant effort expended in performance engineering
• The following slides show:

– execution costs for interpreter operations
– scheduling delays as a function of number of subscribed automata and

as a function of insertion rate
– maximal insertion rate as a function of size of table tuples

SCONE 8 February 2013 24

Performance

SCONE 8 February 2013 25

Performance (cont)

SCONE 8 February 2013 26

Delay vs # automata, ∆t = 8ms Delay vs arrival rate, 4 automata

Performance (cont)

SCONE 8 February 2013 27

Why should you care?

1. The similarity of windows to events over
streams enables the implementation of
several different solutions using differing
numbers of automata and topics.

SCONE 8 February 2013 28

Why should you care (2)?

2. The architecture of the information plane,
coupled with the pub/sub architecture within
the Cache, provides significant flexibility in
how one designs the monitoring system.

3. The system has been shown to be
immediately applicable to a number of
application domains (network monitoring,
factory control, stock analysis)

SCONE 8 February 2013 29

Why should you care (3)?

• Comparison against Cayuga
1. SELECT * from Stocks PUBLISH T
2. Look for double-top formation in the price chart
3. Detect continuous runs of increasing prices for each stock

SCONE 8 February 2013 30

Conclusions

• The unification of publish/subscribe and stream database
concepts has enabled us to address a number of complex
event processing scenarios in several application domains

• Glasgow automata permit one to specify custom operators
dynamically

• Automata are at an intermediate level of abstraction between
“one-liners” and low-level implementations

• Thus, GAPL permits customization of queries, consistent with
streams and relations, to achieve different performance
requirements.

SCONE 8 February 2013 31

Future Work

• Mapping directly from “one-liners” (e.g. Cayuga) to
GAPL source or instructions for its stack machine

• JIT code generation from stack machine byte codes
to hardware instructions

• Establish the scalability of independent automata
with increasing number of cores

• Apply to other domains
• Network of Cache instances
• Release of Cache through open source

SCONE 8 February 2013 32

SCONE 8 February 2013 33

	Unification of Publish/Subscribe Systems and�Stream Databases�The Impact on Complex Event Processing
	What’s the problem?
	What’s current practice?
	The Homework Project
	Information Plane Architecture
	Why something new?
	Underlying Homework system
	The Cache
	Monitoring Applications
	Tables in the Homework cache
	Logging architecture
	Raw event generation
	Detecting Patterns
	Form of an automaton
	Simple examples
	Simple Automaton
	Implementation
	Language features
	Basic Data Types
	Aggregate/Supporting Data Types
	Interpreter functions
	Interpreter functions (cont)
	More Sophisticated Example
	Implementation details
	Performance
	Performance (cont)
	Performance (cont)
	Why should you care?
	Why should you care (2)?
	Why should you care (3)?
	Conclusions
	Future Work
	Slide Number 33

