
Project no. 826278

SERUMS

Research & Innovation Action (RIA)
SECURING MEDICAL DATA IN SMART PATIENT-CENTRIC HEALTHCARE SYSTEMS

Report on Initial Specification of Smart Patient Health Record
Format

D2.2
Due date of deliverable: 31 October 2019

Start date of project: January 1st, 2019

Type: Deliverable
WP number: WP2

Responsible institution: Sopra-Steria Ltd.
Editor and editor’s address: 30 Queensferry Road, Edinburgh EH4 2HS, United Kingdom

Version 1.0

Project co-funded by the European Commission within the Horizon 2020 Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Change Log

Rev. Date Who Site What
1 30/10/19 AF Vermeulen SOPRA Version 001.000
2 30/10/19 E Blackledge SOPRA Version 001.000

1

Executive Summary

SERUMS proposes a unified Smart Patient Health Record (SPHR) that is capable
of both securely storing data from any healthcare provider in a consistent man-
ner, as well as the secure transmission of this data to only approved healthcare
providers. Underlying this is the need for the patient to control who has access to
their data, whilst still complying with all relevant legislation.

The SERUMS solution enables a patient to apply their consent to their own
healthcare data using a range of role-base data sharing agreements via smart con-
tracts stored on an identity block-chain. Any interactions with the system is stored
for audit on the block-chain.

The system supports the future requirements for European wide healthcare by
enabling the citizens to control their own healthcare data.

2

Contents

Executive Summary . 2

1 Introduction 5

2 Smart Patient Health Format 6

3 Technical Implementation 8
3.1 Overview . 8
3.2 The St.Andrews Virtual Machine 8

3.2.1 Introduction to the Virtual Machines 8
3.2.2 Signing into Fracas . 9
3.2.3 Install Docker . 9
3.2.4 Install Cloudera CDH Image 10
3.2.5 Python and Pandas . 11
3.2.6 PyHive . 11

3.3 Storage . 12
3.3.1 Choice of Technologies 12
3.3.2 Data Lake Setup . 12
3.3.3 Converting Raw Files to Data Vault 12

3.4 Access Control and Blockchain 16
3.4.1 Overview of Blockchain and Access Controls 16
3.4.2 Hyperledger Fabric . 18

3.5 Blockchain Setup . 18
3.6 Machine Learning and Metadata 19

3.6.1 Overview of Machine Learning and Metadata Extraction . 19
3.6.2 Machine Learning and Metadata in Serums 20
3.6.3 Machine Learning and Metadata Setup 21

4 Data Lake 22
4.1 General Data Lake Description 22
4.2 Data Lake Zones . 22

5 Rapid Information Factory 24
5.1 General Rapid Information Factory Description 24
5.2 What is R-A-P-T-O-R? . 25

3

Appendices 28
.1 Appendix A - 0100-SERUMS-RIF-DL-Hadoop-Setup 29
.2 Appendix B - Adding Files to Raw 34
.3 Appendix C - Raw to MySQL 35
.4 Appendix D - CSV to MySQL 36
.5 Appendix E - Converting to Data Vault 39
.6 Appendix F . 43

.6.1 serums-blockchain-master 43
.7 Appendix G . 54

.7.1 serums-frontend-master 54
.8 Appendix H . 54

.8.1 serums-backend-master 54
.9 Appendix I . 55

.9.1 serums-ansible-master 55
.10 Appendix J . 55

4

Chapter 1

Introduction

This deliverable is comprised of T2.2: Storage and Access Control for Smart Pa-
tient Records, T2.3: Blockchain for Smart Patient Records, and T2.4: Serums Data
Lake and Metadata Extraction. Having already defined the format for the Smart
Patient Health Record in T2.1, this deliverable is concerned with providing mecha-
nisms for regulating access to it, providing mechanisms for tracking the lineage and
provenance of the data using a blockchain approach, and develop new machine-
learning mechanisms for structuring data into the patient records. This deliverable
contains the initial versions of the software.

5

Chapter 2

Smart Patient Health Format

Our three (3) use case partners have their own proprietary formats for storing data
within their own systems. With the ultimate goal of combining their data in a
single record, it is necessary that we design a common format. As described in
D2.1 - Report on Initial Specification of Smart Patient Health Records we have
designed a format for the Smart Patient Health Record based on the data vault 2.0
framework.

The data vault is made up of three core table types in the database. These are
Hubs, which hold the primary and foreign keys, Links, which join the Hubs via
many-to-many relationships, and Satellites, which join onto the Hubs and contain
the descriptive data.

In our format, we have chosen five types of Hubs. These are Time, Person,
Object, Location, and Event (T-P-O-L-E). The Satellites are therefor all related to
one of these five core categories hubs. The Satellites are then further grouped into
smaller sets that contain closely related data.

As a way of demonstrating the process, we can use the example of the source
NDC SMR01 as seen in figure 2.1 from the USTAN use case. We then abstract
metadata out via a process described in the technical implementation section on
data vault conversion 3.3.3. The output of this can be seen in figure 2.2.

The main advantage of this format is that as we add more data sources at any
point in future and we can always join onto the relevant Hub. This allows the
Satellites of a Hub to be easily checked for similar data. This can either be by
a manual process or handled by machine learning. If data from two Satellites is
deemed to be similar enough then these can then be grouped together into a single
new Satellite to optimise the data. For instance we might have drug prescriptions
from two health centres. When they are added the the SPHR they would join as two
separate Satellites to the Object Hub. By combining them into a single Satellite we
would ensure that we could deliver the complete record of prescription drugs for
the patient as a universal summary view.

A further advantage of our data vault format is how it will compliment the use
of tags in the smart contracts as describe in section 3.4. We enforce a standard

6

naming convention for the Satellites that follow the pattern SAT HUB NAME -
MAJOR GROUPING MINOR GROUPING for example in figure 2.2 we can see
the Satellites sat_time_admissions_date and sat_object_operations_details. When
the patient or health centre design smart contracts, they add tags as part of the
process. If for instance a tag for admissions or operations was added, the data vault
would know immediately which data to package up and return.

Figure 2.1: NDC SMR01 Source Table

Figure 2.2: NDC SMR01 Data Vault

7

Chapter 3

Technical Implementation

3.1 Overview

In this chapter we will present an overview of the individual software components,
as well as how they will combine to answer the requirements of this deliverable.
The tasks will be broken down into four sections covering Storage, Access Control
and Block-chain, Machine-Learning and Metadata, and how these combine into an
integrated effective solution.

3.2 The St.Andrews Virtual Machine

3.2.1 Introduction to the Virtual Machines

The environment that has been chosen for the initial version of the software are
virtual machines (VMs) running on servers inside of the St.Andrews campus. This
has brought with it cost savings while we are still early in development. Within
the St.Andrews VMs we have separate spaces set up for the Block-chain and Data
Lake development.

The Data Lake development is taking place within a Docker image. Specifi-
cally it is one that has been obtained from Cloudera, a leader in cloud-based tech-
nologies. The image itself contains a highly robust Hadoop instance, giving us out
of the box functionality and bypassing a lot of the difficulties associated with the
manual setup of a custom Hadoop cluster.

This Docker image does come with some downfalls however. The OS is Cen-
tOS7 and the image is limited to Python34. This has meant that there is often some
wrangling involved to get the necessary python packages to work, with a special
focus involved in making sure the dependencies are correctly specified for legacy
versions of the packages.

The future stages of the project will resolve some of these shortfalls to result
into a more effective and efficient final solution.

The follows instructions is used in order to replicate the current setup.

8

3.2.2 Signing into Fracas

• We need to make sure our ssh key has been added to both Bigmill and Fracas

• Now we can sign into Bigmill:

$ ssh -X -Y euanblackledge@bigmill.cs.st-andrews.
(cont.)ac.uk -v

• Now we can sign into Fracas:

$ ssh -Y -X -p 2203 euanblackledge@fracas.cs.st-
(cont.)andrews.ac.uk -v

The port 2203 is the endpoint for the Data Vault

3.2.3 Install Docker

• First we grab the password:

$ cat passwd.txt

• Now we need to make sure we are up to date:

$ sudo apt-get update

• Now we install dependecies:

$ sudo apt-get install \
apt-transport-https \
ca-certificates \
curl \
gnupg-agent \
software-properties-common

• Add Docker’s official GPG key:

9

$ curl -fsSL https://download.docker.com/linux/
(cont.)ubuntu/gpg | sudo apt-key add -

• Verify fingerprint:

$ sudo apt-key fingerprint 0EBFCD88

• Install stable repository:

$ sudo add-apt-repository "deb [arch=amd64] https
(cont.)://download.docker.com linux/ubuntu $(
(cont.)lsb_release -cs) stable"

• Now install Docker and its tools then verify it works:

$ sudo apt-get install docker-ce docker-ce-cli
(cont.)containerd.io

$ sudo docker run hello-world

If this runs successfully then it is time to get the Cloudera CDH image

3.2.4 Install Cloudera CDH Image

• Run this to pull the image:

$ docker pull cloudera/quickstart:latest

• Check the image ID for the Cloudera Docker image:

$ sudo docker images

This will return something similar to the table 3.1.

REPOSITORY TAG IMAGE ID CREATED SIZE
cloudera/quickstart latest 914bab9e5b49 3 years ago 6.34GB

Table 3.1:

• Use that image id in the following command:

10

$ sudo docker run --hostname=quickstart.cloudera
(cont.)--privileged=true -t -i -p 8888:8888 -p
(cont.)7180:7180 -p 8088:80 914bab9e5b49 /usr/
(cont.)bin/docker-quickstart

In this example "914bab9e5b49" is the image ID

3.2.5 Python and Pandas

Out of the box Python2 is installed however for ease of development across plat-
forms we need to install Python3 and Pandas. Note the versions required for this
setup. Currently the VM is only capable of running Python3.4 which is no longer
supported by Pandas

$ sudo yum install python34-setuptools
$ sudo yum install python-devel
$ sudo easy_install-3.4 pip
$ pip install numpy==1.7.0
$ pip install pandas==0.19.0
$ cat pip install mysql-connector-python

3.2.6 PyHive

In order to run PyHive we need to first install the dependencies:

$ sudo yum install gcc
$ sudo yum install python34-devel
$ sudo yum install libevent-devel
$ pip install thrift
$ pip install sasl
$ pip install thrift_sasl
$ pip install pyhive

This enables the software to support access to Hive directly from our python
code to utilise for processing the source data and data vault as a single data lake.

11

3.3 Storage

3.3.1 Choice of Technologies

For the initial version of storage, a combination of Hadoop running alongside
MySQL has been chosen. These two technologies have been chosen for two key
reasons:

Firstly, they are both available for free. During this initial stage, where we
are still very much researching and testing different tools and techniques, it is im-
portant that we keep the associated costs to a minimum. Towards the end Serums
we will aim to move to an at-scale cloud solution, like AWS or Azure, in order to
improve speed, scaling, security, and improved access.

Secondly, they are natural bedfellows. Hadoop allows us to store just about
anything, from csvs to images. However, in order to combine these into the SPHR,
we can make the process a lot easier if we utilise a more traditional relational
database like MySQL.

All software code are developed in Python3 to open it to more developers for
ease of extension in future.

3.3.2 Data Lake Setup

For each of the use case partners, we have set up their own data lake. This al-
lows for each partner to have their own space for the storage and processing of
data. This process is handled by a piece of code named 0100-SERUMS-RIF-DL-
Hadoop-Setup.

This code defines the structure of the data lake 4 based on the Rapid Informa-
tion Factory (RIF) framework 5. The process to run this can be run from the ter-
minal within the St. Andrews Virtual Machine 3.2.6. Within the folder code/0100-
SERUMS-RIF-DL-Hadoop-Setup type:

$ python3 setup.py FCRB

This will result in the RIF structure being created within Hadoop with the prefix
/FCRB. The code can be found in Appendix A .1

3.3.3 Converting Raw Files to Data Vault

The process is illustrated in the figure 3.1. As can be seen, there are four sets of
code that transform the source data into the data vault format. These are as follows:

• Adding Files to Raw

• CSV to MySQL

• Raw to MySQL

12

Figure 3.1: Processing Raw Files

• Data Vault Converter

Adding Files to Raw is concerned with moving files into their endpoint in
Hadoop. This can handle any type of file, however at this stage of development
we are mostly concerned with either csvs or text files.

Within the folder code/adding_files_to_raw type:

$ python3 adding_files_to_raw.py -l "data/
(cont.)fcrb_source" -f medication.csv -d "/FCRB
(cont.)/100-DL/100-Raw-Zone/200-Internal/100-
(cont.)CSV/"

This would result in the file medication.csv being moved from data/fcrb_source
to the end point /FCRB/100-DL/100-Raw-Zone/200-Internal/100-CSV/ inside of
Hadoop. The code for this can be found within Appendix B .2

Raw to MySQL is concerned with taking the files that have been placed in the
Raw Zone of Hadoop and converting them to tables within MySQL. As part of this
the program does some prepossessing to determine some of the data types, making
the final table in MySQL a more accurate representation of the source material.
For instance if a csv has been imported and every field has been classed as a text
field, this program will determine if any can be reclassified as integers or dates.

Within the folder code/raw_to_mysql type:

$ python3 raw_to_mysql.py -u root -p -l /FCRB/100-
(cont.)DL/100-Raw-Zone/200-Internal/100-CSV/ -d
(cont.) fcrb

13

This would result in the files found in /FCRB/100-DL/100-Raw-Zone/200-Internal/100-
CSV/ to be converted into tables within the fcrb database within MySQL. The code
for this can be found within Appendix C .3

CSV to MySQL is concerned with taking well structured csvs from the Raw
Zone of Hadoop and converting them to tables within MySQL. While it works
almost identically to Raw to MySQL, by limiting the amount of preprocessing re-
quired, it is a much faster program to run. In a future version of the project, these
two programs will be wrapped into a single tool that is capable of deciding which
would be the best choice to use. CSV to MySQL proved to work very well with the
synthetic data provided by IBM.

Within the folder code/csv_to_mysql type:

$ python3 csv_to_mysql.py -u root -p -l /USTAN
(cont.)/100-DL/100-Raw-Zone/200-Internal/100-
(cont.)CSV/ -d ustan

This would result in the files found in /USTAN/100-DL/100-Raw-Zone/200-
Internal/100-CSV/ to be converted into tables within the ustan database within
MySQL. The code for this can be found within Appendix D .4

Data Vault Converter is concerned with transforming the tables found within
MySQL into the data vault format. This is the final step in the processing of the
raw data which allows us to begin building up the SPHR. If we take the source
table for NDC SMR01 2.1 from the USTAN use case, we are aiming to abstract it
out into the a data vault version of itself as seem the the NDC SMR01 Data Vault
figure 2.2.

Unlike the previous sections, this requires a little bit of manual processing to
ensure that the tables are correctly created. The user must create two csv control
files and place them correctly within the file structure. In the example of the NDC
SMR01 table as seen in figures 2.1 and 2.2 we must feed into the program a list
of the columns, including their destination table name and the key of that table, as
well as a list of the the hubs. These can be seen in tables 3.2 and 3.3 respectively.

At the moment these tables require a human-in-the-loop with some understand-
ing of the underlying data. It is one of the design requirement for Serums is that
we are able to automate this part of the process using Machine Learning to better
improve the speed at which data sources can be introduced to the overall system.

14

name destination foreign_key
admission_date sat_time_admissions_date id_hub_time
discharge_date sat_time_admissions_date id_hub_time
length_of_stay sat_time_admissions_date id_hub_time

sex sat_person_demographic_details chi_hub_person
age_in_years sat_person_demographic_details chi_hub_person
ethnic_group sat_person_demographic_details chi_hub_person
marital_status sat_person_demographic_details chi_hub_person

postcode sat_person_demographic_details chi_hub_person
main_condition sat_object_conditions_details id_hub_object

other_condition_1 sat_object_conditions_details id_hub_object
other_condition_2 sat_object_conditions_details id_hub_object
other_condition_3 sat_object_conditions_details id_hub_object
other_condition_4 sat_object_conditions_details id_hub_object
main_operation_a sat_object_operations_details id_hub_object
main_operation_b sat_object_operations_details id_hub_object

Table 3.2: NDC SMR01 Column Control File

hub primary_key
hub_person chi
hub_time id

hub_object id

Table 3.3: NDC SMR01 Hub Control File

15

3.4 Access Control and Blockchain

Figure 3.2: Block-chain and Access Control

3.4.1 Overview of Blockchain and Access Controls

As well as using blockchain to record access requests to the data vault, we are also
using a feature of the Hyperledger Fabric framework known as smart contracts.
Smart contracts work in similar way to regular contracts in that an agreement is set
up between parties to which all parties concerned must adhere to. In other words,
a smart contract contains a list of criteria which are checked when the blockchain
is accessed and will only execute if all of the criteria have been met.

For Serums we have designed an API which allows both patients and hospitals
the ability to set rules around the data that will limit who can see what and where
the data may be sent by european law. For instance, in the ZMC use case, we
have a patient interested in sharing their data with an external specialist regarding

16

a recent leg operation. As such a smart contract would be initialised by the patient
that contained the id for the doctor, the id of their health centre, and the tags for the
parts of the data that the patient wishes to share. In this case the tags would likely
be "LEG", "OPERATION", "BASIC PERSONAL". The exact nomenclature for
these tags has yet to be decided upon, however this should illustrate the principle
behind the idea.

The specialist would then make a request to the Serums system. Having been
authenticated, they would then be passed to the blockchain integration layer which
would check their permissions against the smart contracts. Once the smart con-
tract validated the rules for that specialist’s access in the data vault, the blockchain
would then pass this information over to the data vault.

At this stage the data vault would gather the relevant data for the patient, en-
crypt it, store it in a secure location and pass the key via the blockchain integration
layer, and onto the specialist. The Serums system would then contact the data vault
directly, asking for the encrypted data. At this point the data would then be deliv-
ered via some form of secure transfer such as SFTP, allowing the specialist to use
the key they had already received to decrypt the data. This multi-phase encryption
secures the data against unauthorised access without consent.

This process gives us the ability to record any requests to and from the complete
system. Additionally it allows us to increase the security by passing the key and
data by two distinct paths. The use of these alternative routes results in that even
if the key were to be intercepted, an attacker would also have to intercept the data
separately and match them in real-time.

This process is illustrated in in figure 3.2. The steps can be described as fol-
lows:

1. Hospital is added to the smart contract and initial rules are added following
local legislation governing data sharing controls

2. Patient is added to the smart contract

3. Patient creates rule allowing healthcare professional access to a limited se-
lection of their data

4. Healthcare professional authenticates themselves to the Serums system

5. The healthcare professional access rules are validated against the smart con-
tract

6. The blockchain integration layer sends a request to the data vault for the
relevant data

7. The data vault encrypts the data and sends key to the blockchain integration
layer

8. The key is passed to the healthcare professional

17

9. The Serums system makes a request to the data vault for the encrypted data

10. The data vault passes the encrypted data to the healthcare professional where
it can be decrypted by the previously sent key

3.4.2 Hyperledger Fabric

Blockchain is a programmable, distributed ledger with an immutable history of
transactions. For every transaction consensus has to be reached among the partic-
ipating organisations (or commonly denoted as nodes) before it can be written on
the ledger.

Blockchain is programmable via the notion of a smart contract that is simply a
piece of code, that is installed and executed within the blockchain network; the exe-
cution of a smart contract’s function creates a transaction. Note that the transaction
is written on the ledger of each node concurrently. Consequently, the ledgers are
always synchronised. If a node has some downtime, when it restarts, it automati-
cally synchronises its ledger to the ledgers of the rest of the nodes. In addition, a
single ledger (of a single node) cannot be tampered unless the attacker can manage
to concurrently infiltrate at least the majority (if not all) of the nodes, depending on
the consensus protocol used.

In the proposed architecture a blockchain network is created where every rele-
vant organisation (e.g a hospital) participates. The user’s permissions that control
access for the SPHR are programmed using smart contracts. This allows versatility
as the rules used to form the permissions can be updated whenever required. How-
ever, due to the blockchain’s nature, a single organisation cannot force an update of
these rules as transactions will not be able to reach consensus and inevitably will
not be written on the ledger.

For this version of the Serums blockchain, the smart contacts have been written
in Hyperledger Fabric. Hyperledger Fabric has the advantage of being an API. As
such we have known end points that we are able to interact with, handling all of our
requests. This is in comparison to something like Ethereum smart contracts which
requires the developer to know a coding language called solidity, and then to write
all of the functions themselves.

3.5 Blockchain Setup

Full details of the blockchain setup process can be found in Appendices F .6, G .7,
H .8, and I .9. This includes the instructions to deploy the blockchain itself, the
frontend to interact with it, the backend that links them, and an ansible instance
which helps to handle to deployment across multiple servers.

18

3.6 Machine Learning and Metadata

3.6.1 Overview of Machine Learning and Metadata Extraction

Figure 3.3: Machine Learning and Metadata Extraction Vision

Machine learning is the application of artificial intelligence to enable a system the
ability to automatically learn and improve through repeated running.

Metadata is additional descriptive attributes for a piece of data. For instance, if

19

we took the value "seven" we could attach some attributes to it that might contain
things such as that it is a string, it is five characters in length, and that it also
contains a number. Using these attributes we can classify data in many additional
ways. Furthermore, using these classifications, we can begin to look for underlying
patterns and similarities that might not have been initially obvious.

By feeding metadata into machine learning algorithms, we can automate this
classification and pattern finding.

3.6.2 Machine Learning and Metadata in Serums

One of the aims of this work package is to automate the processing of data, enabling
the automatic creation and curation of the Smart Patient Health Record (SPHR). To
achieve this we will be utilising a combination of machine learning tools and tech-
niques. These will be used to extract metadata from the synthesised data provided
by WP5, classify the results under one of our targets of Time, Person, Object, Loca-
tion, or Event (T-P-O-L-E), and look for similarities in order to form the Satellites
of the SPHR as described in chapter 2.

Figure 3.3 illustrates our ultimate goal for the machine learning model. This
will link the data lake with the rapid information factory as described in chapters 4
and 5 respectively.

Figure 3.4: Metadata Extraction

For the initial version of the software we have focused on the metadata extrac-
tion, completing a section of the target as can be seen in figure 3.4. This has been
achieved primarily as a test bed for the deployment within the virtual machines,
as we experiment with the limits of what is possible within this environment. Our
ultimate goal will rely heavily on parallel processing so we may look towards a
cloud based solution, however we now have a clearer understanding of what may
be achievable in the current set up.

20

3.6.3 Machine Learning and Metadata Setup

The initial version of the software relies on a python package named pandas-
profiling. This package generate a profile report on the data that gives the following
results:

• Essentials: type, unique values, missing values

• Quantile statistics like minimum value, Q1, median, Q3, maximum, range,
interquartile range

• Descriptive statistics like mean, mode, standard deviation, sum, median
absolute deviation, coefficient of variation, kurtosis, skewness

• Most frequent values

• Histogram

• Correlations highlighting of highly correlated variables, Spearman, Pearson
and Kendall matrices

• Missing values matrix, count, heatmap and dendrogram of missing values

As can be seen in the code found in Appendix J .10, the data is brought in
from our MySQL store. This is data that has already been given some structure
by previous processes. It is then ran through the pandas-profiling package and the
results are then collated. Currently this is outputted as an HTML file.

Development in the future will be required in order to change the way in which
the output is generated, with the goal being to add these as attributes to the source
data and storing the results as a data frame in the structured layer of the Hadoop
data lake.

21

Chapter 4

Data Lake

4.1 General Data Lake Description

A data lake is a centralised repository that allow the storage of any structured and
unstructured data in a single structure. A data lake also scales to a larger scale
model with ease. The use of the data lake can range from simple storage, to a base
from which to run analytics or big data processing, and machine learning at-scale.

The Serums data lake will combine all of these potential uses, with the structure
designed to clearly separate each task.

4.2 Data Lake Zones

Figure 4.1: Data Lake Zones

• Workspace Zone

– The Workspace Zone is used for any internal processing of the data

– It can be used for prototyping and development of new methods and
functions

– It is temporary

22

– It is never exposed to the outside world

• Raw Zone

– The Raw Zone is the entry point for data into the system

– No processing is ever done here

– It is only an input

• Structured Zone

– The Structured Zone is where the raw data is processed and given struc-
ture

– The data is profiled and metadata generated

– The metadata is added to the data and will stay with it

– It is never exposed to the outside world

• Curated Zone

– The Curated Zone is where the data vault is generated

– It uses the metadata to drive the structure

– It is never exposed to the outside world

• Consumer Zone

– The Consumer Zone contains a stable version of the data vault

– It is exposed to the API gateway

– It is from where the data is sent on request

• Analytics Zone

– The Analytics Zone is where any mass external machine learning takes
place

– Under discussion is that it may be readily available for research

∗ This would be based on consent from the patient as well as the
application of data masking, such as that being developed by IBM

23

Chapter 5

Rapid Information Factory

5.1 General Rapid Information Factory Description

Figure 5.1: Raptor and the Data Lake

The Rapid Information Factory (RIF) is a framework for processing data at-scale.
Specifically for Serums, the RIF will drive the management of the data lake 4. The
processing of the data within the data lake is handled by the RAPTOR engine.

24

5.2 What is R-A-P-T-O-R?

Figure 5.2: Raptor Description

The Retrieve-Assess-Process-Transform-Organise-Report (R-A-P-T-O-R) is a stan-
dardised methodology to process data though a pipeline spread over six steps. Fig-
ure 5.2 shows a generic description of the system.

The process enhances the processing to make the data sharing more effective
and efficient. The basic solution is a hub-an-spoke design to reduce the complexity
of interaction between data sources. This R-A-P-T-O-R engine creates reusable
data flows using the following data pipelines:

• Retrieve

– Collects the data from the raw zone in the data lake to transfer it into
the base format for the processing

• Assess

– Assess the data formats and data quality for the data lake to approve the
quality to comply to the General Data Protection Regulation (GDPR) -
Right to rectification the data lake

• Process

– Consolidate the data into a universal healthcare data vault using the
Time-Person-Object-Location-Event (T-P-O-L-E) hubs

• Transform

– Extract data from data vault to data warehouse for the patient data con-
tainer as approved via smart contract and management via a blockchain
system to approve what healthcare tags has consent approval

• Organise

25

– Stores the extracted encrypted healthcare container in encrypted format
within the data lake with using data attributes via healthcare tags

• Report

– The report step enables the system to transfer the encrypted healthcare
container to the approved data receiver

26

6. Conclusion

The data sources between the different healthcare providers are a diverse set of
formats. The current process assists the conversion of the raw data as extracted
from the healthcare provider into an universal format. The blockchain enables an
immutable data sharing contract between the citizen and their healthcare providers.
The multi-phase encryption and access technologies ensures the data security of the
overall system.

The next stage of the data lake and data vault will ensure effective stability
and enhancements of the healthcare process currently in use between healthcare
providers.

27

Appendices

28

.1 Appendix A - 0100-SERUMS-RIF-DL-Hadoop-Setup

0100-SERUMS-RIF-DL-Hadoop-Setup
Getting the arguments from the command line

import sys
hospital_name = sys.argv[1]

Setting up RIF routes

rif_results = []
base = ’/{}/000-RIF’.format(hospital_name)

#100-Functional-Layer

group = ’100-Functional-Layer’
end = [’100-Retrieve’, ’200-Assess’, ’300-Process’, ’

(cont.)400-Transform’, ’500-Organize’, ’600-Report’
(cont.)]

for x in range(0, len(end)):
concatenated_route = base + ’/’ + group + ’/’ +

(cont.)end[x] + ’/’
rif_results.append(concatenated_route)

200-Operational-Management-Layer

group = ’200-Operational-Management-Layer’
sub = ’100-Crawler-Definitions’
end = [’100-Crawler-Master-Service-Definitions’,

’200-Crawler-Workcell-Service-Definitions’,
’300-Crawler-Input-Definitions’,
’400-Crawler-Output-Definitions’]

for x in range(0, len(end)):
concatenated_route = base + ’/’ + group + ’/’ +

(cont.)sub + ’/’ + end[x] + ’/’
rif_results.append(concatenated_route)

sub = ’200-Crawler-Management’
end = [’100-Retrieve-Population’,

29

’200-Assess-Population’,
’300-Process-Population’,
’400-Transform-Population’,
’500-Organise-Population’,
’600-Report-Population’]

for x in range(0, len(end)):
concatenated_route = base + ’/’ + group + ’/’ +

(cont.)sub + ’/’ + end[x] + ’/’
rif_results.append(concatenated_route)

sub = [’300-Parameters’,
’400-Scheduling’,
’500-Monitoring’,
’600-Communication’,
’700-Alerting’,
’800-Codes-Management’]

for x in range(0, len(sub)):
concatenated_route = base + ’/’ + group + ’/’ +

(cont.)sub[x] + ’/’
rif_results.append(concatenated_route)

300-Audit-Balance-Control-Layer

group = ’300-Audit-Balance-Control-Layer’
sub = [’100-Audit’,

’200-Balance’,
’300-Control’]

for x in range(0, len(sub)):
concatenated_route = base + ’/’ + group + ’/’ +

(cont.)sub[x] + ’/’
rif_results.append(concatenated_route)

400-Utility-Layer

group = ’400-Utility-Layer’
sub = [’100-Maintenance-Utilities’,

’200-Data-Utilities’,
’300-Processing Utilities’]

30

for x in range(0, len(sub)):
concatenated_route = base + ’/’ + group + ’/’ +

(cont.)sub[x] + ’/’
rif_results.append(concatenated_route)

500-Business-Layer

group = ’500-Business-Layer’
sub = [’100-Functional-Requirements’,

’200-Non-functional-Requirements’,
’300-Data-Profiles’,
’400-Sun-Models’]

Setting up Data Lake routes

dl_results = []
base = ’/{}/100-DL’.format(hospital_name)

000-Workspace-Zone

group = ’000-Workspace-Zone’

concatenated_route = base + ’/’ + group + ’/’
dl_results.append(concatenated_route)

100-Raw-Zone

group = ’100-Raw-Zone’
sub = ’100-External’
end = [’100-University-of-St-Andrews’,

’200-Zuyderland-Medisch-Centrum’,
’300-Fundacio Clinic’,
’900-Other’]

for x in range(0, len(end)):
concatenated_route = base + ’/’ + group + ’/’ +

(cont.)sub + ’/’ + end[x] + ’/’
dl_results.append(concatenated_route)

sub = ’200-Internal’
end = [’100-CSV’,

31

’200-TEXT’,
’300-JSON’,
’400-XML’,
’900-Human-in-the-Loop’]

for x in range(0, len(end)):
concatenated_route = base + ’/’ + group + ’/’ +

(cont.)sub + ’/’ + end[x] + ’/’
dl_results.append(concatenated_route)

sub = ’300-Archive’
end = [’100-CSV’,

’200-TEXT’,
’300-JSON’,
’400-XML’,
’900-Human-in-the-Loop’]

for x in range(0, len(end)):
concatenated_route = base + ’/’ + group + ’/’ +

(cont.)sub + ’/’ + end[x] + ’/’
dl_results.append(concatenated_route)

200-Structured-Zone

group = ’200-Structured-Zone’

concatenated_route = base + ’/’ + group + ’/’
dl_results.append(concatenated_route)

300-Curated-Zone

group = ’300-Curated-Zone’
dv = [’Hub’,’Satellite’,’Link’]
tpole = [’Time’,’Person’,’Object’,’Location’,’Event’]

for dvpath in dv:
if dvpath == ’Link’:

for hubpath1 in tpole:
for hubpath2 in tpole:

if hubpath1 != hubpath2:
hubpath = hubpath1 + ’-’ +

(cont.)hubpath2
concatenated_route = base + ’/’ +

32

(cont.)group + ’/’ + dvpath + ’
(cont.)/’ + hubpath + ’/’

dl_results.append(
(cont.)concatenated_route)

else:
for hubpath in tpole:

concatenated_route = base + ’/’ + group +
(cont.)’/’ + dvpath + ’/’ + hubpath + ’
(cont.)/’

dl_results.append(concatenated_route)

400-Consumer-Zone

group = ’400-Consumer-Zone’

concatenated_route = base + ’/’ + group + ’/’
dl_results.append(concatenated_route)

500-Analytics-Zone

group = ’500-Analytics-Zone’

concatenated_route = base + ’/’ + group + ’/’
dl_results.append(concatenated_route)

Listing the results

print(rif_results)
print(dl_results)

Generating CSV for the end points

import pandas as pd
df = pd.DataFrame(rif_results, columns=[’End Points

(cont.)’])
df.to_csv(’RIF End Points.csv’)

df = pd.DataFrame(dl_results, columns=[’End Points
(cont.)’])

df.to_csv(’DL End Points.csv’)

33

Making the DL

import os

for route in rif_results:
os.system("hadoop fs -mkdir -p {}".format(route))

for route in dl_results:
os.system("hadoop fs -mkdir -p {}".format(route))

os.system("hadoop fs -ls /")

.2 Appendix B - Adding Files to Raw

import argparse
import os

parser = argparse.ArgumentParser()
parser.add_argument("-l", "--location", help="Select

(cont.)folder name")
parser.add_argument("-f", "--file", help="Select file

(cont.)name")
parser.add_argument("-d", "--destination", help="

(cont.)Select destination")

args = parser.parse_args()

if(args.file and args.destination):
if(args.location):

what_to_put = "{}/{}".format(args.location,
(cont.)args.file)

else:
what_to_put = "{}".format(args.file)

where_to_put_it = args.destination
os.system("hadoop fs -put {} {}".format(

(cont.)what_to_put, where_to_put_it))
os.system("hadoop fs -ls {}".format(

(cont.)where_to_put_it))

34

.3 Appendix C - Raw to MySQL

import pandas as pd
import numpy as np
import mysql.connector as mysql
import getpass
import argparse
import sys
import subprocess
import re
import os
from sqlalchemy import create_engine

parser = argparse.ArgumentParser()
parser.add_argument("-u", "--user", help="Set user")
parser.add_argument("-p", "--password", help="Set

(cont.)password", action="store_true")
parser.add_argument("-l", "--location", help="Select

(cont.)hadoop folder name")
parser.add_argument("-d", "--database", help="Select

(cont.)MySQL database to pass files")

args = parser.parse_args()

if(args.password):
try:

pwd = getpass.getpass()
except Exception as error:

print(’ERROR’, error)
else:

print(’Password entered’)

engine = create_engine("mysql+pymysql://{}:{}
(cont.)@localhost/{}".format(args.user, pwd, args.
(cont.)database))

connection = engine.connect()

cmd = "hadoop fs -ls {}".format(args.location)
files = str(subprocess.check_output(cmd, shell=True)).

(cont.)strip().split(’\n’)
pattern = r’(?<=\/).+?(?=\\)’

35

tables_to_make = []

file_names = re.findall(pattern, files[0])
for file in file_names:

cmd = "hadoop fs -cat /{}".format(file)
response = str(subprocess.check_output(cmd, shell=

(cont.)True))
tables_to_make.append(response)

index = 0
for table in tables_to_make:

table = str(table)
column_pattern = r’(?<=\’).+?(?=\\)’
columns = re.findall(column_pattern, table)
columns = columns[0].split(’,’)
columns = [column.strip() for column in columns]
df = pd.DataFrame(columns=columns)
row_pattern = r’(?=[A-Z]).+?(?=\\n)’

table = table.replace(’"’, ’’)
table = ’"’ + table + ’"’

rows = re.findall(row_pattern, table)
rows.pop(0)
for row in rows:

values = row.split(’,’)
df_to_append = pd.DataFrame([values], columns=

(cont.)columns)
df = df.append(df_to_append, ignore_index=True

(cont.))

name = os.path.splitext(os.path.basename(
(cont.)file_names[index]))[0]
index+=1
df.to_sql(name, con=connection)
print("CREATED {}".format(name.upper()))

.4 Appendix D - CSV to MySQL

import pandas as pd
import numpy as np
import getpass

36

import argparse
import sys
import subprocess
import re
import os
from sqlalchemy import create_engine
from dateutil.parser import parse

parser = argparse.ArgumentParser()
parser.add_argument("-u", "--user", help="Set user")
parser.add_argument("-p", "--password", help="Set

(cont.)password", action="store_true")
parser.add_argument("-l", "--location", help="Select

(cont.)hadoop folder name")
parser.add_argument("-d", "--database", help="Select

(cont.)MySQL database to pass files")

args = parser.parse_args()

if(args.password):
try:

pwd = getpass.getpass()
except Exception as error:

print(’ERROR’, error)
else:

print(’Password entered’)

engine = create_engine("mysql+pymysql://{}:{}
(cont.)@localhost/{}".format(args.user, pwd, args.
(cont.)database))

connection = engine.connect()

cmd = "hadoop fs -ls {}".format(args.location)
files = str(subprocess.check_output(cmd, shell=True)).

(cont.)strip().split(’\n’)
pattern = r’(?<=\/).+?(?=\\)’

tables_to_make = []

file_names = re.findall(pattern, files[0])
for file in file_names:

cmd = "hadoop fs -cat /{}".format(file)
response = str(subprocess.check_output(cmd, shell=

(cont.)True))

37

tables_to_make.append(response)

def validate_fields(string, fuzzy=False):
type = ""
try:

int(string)
type = "int"
return type

except:
pass

try:
float(string)
type = "float"
return type

except:
pass

try:
parse(string, fuzzy=fuzzy)
type = "date"
return type

except:
pass

return "string"

index = 0
for table in tables_to_make:

table = str(table)
table = table.replace(’b’, ’’, 1)
table = table.replace("’", "")
column_pattern = r’(?=[a-zA-Z]).+?(?=\\n)’
columns = re.findall(column_pattern, table)
columns = columns[0].split(’,’)
columns = [column.strip() for column in columns]
df = pd.DataFrame(columns=columns)

row_pattern = r’(?<=\\n).+?(?=\\n)’

table = table.replace(’"’, ’’)
table = ’"’ + table + ’"’

rows = re.findall(row_pattern, table)
for row in rows:

values = row.split(’,’)
df_to_append = pd.DataFrame([values], columns=

38

(cont.)columns)
df = df.append(df_to_append, ignore_index=True

(cont.))

name = os.path.splitext(os.path.basename(
(cont.)file_names[index]))[0]

index+=1

for keys, values in df.iteritems():
type = ""
value_array = []
for value in values:

type = validate_fields(value)
value_array.append(type)
same_value = value_array.count(value_array

(cont.)[0]) == len(value_array)
if(same_value):

if(type == ’date’):
df[keys] = pd.to_datetime(values)

if(type == ’int’):
df[keys] = pd.to_numeric(values)

if(type == ’float’):
df[keys] = df[keys].astype(float)

print(’\n’)
df.to_sql(name, con=connection)
print("CREATED {}".format(name.upper()))

.5 Appendix E - Converting to Data Vault

import pandas as pd
from sqlalchemy import create_engine
import getpass
import argparse

parser = argparse.ArgumentParser()
parser.add_argument("--user", "-u", help="Input MySQL

(cont.)username")
parser.add_argument("--password", "-p", help="Input

(cont.)MySQL password", action="store_true")
parser.add_argument("--primary_key", "-k", help="Input

(cont.) primary key of source table")
parser.add_argument("--source_table", "-s", help="

39

(cont.)Input source table name")

args = parser.parse_args()

if(args.password):
try:

pwd = getpass.getpass()
except Exception as error:

print(’ERROR’, error)
else:

print(’Password entered’)

user = args.user
source_table = args.source_table
source_key = args.primary_key
engine = create_engine("mysql+pymysql://{}:{}

(cont.)@localhost/{}".format(user, pwd,
(cont.)source_table))

df = pd.read_sql("select * from {}".format(
(cont.)source_table), con=engine)

column_controller = pd.read_csv(’./columns/{}_to_dv.
(cont.)csv’.format(source_table))

destination_and_key = column_controller[[’destination’
(cont.), ’foreign_key’]].drop_duplicates()

ids = pd.read_sql("select {} from {}".format(
(cont.)source_key, source_table), con=engine)

ids = ids.chi_general_data.unique()
ids = pd.DataFrame(columns=[source_key], data=ids)

hubs = pd.read_csv(’./hubs/{}_hubs.csv’.format(
(cont.)source_table))

primary_hub = hubs[hubs.index == 0]

secondary_hubs = hubs[hubs.index != 0]

def setting_up_the_hubs_and_links(primary_hub,
(cont.)secondary_hubs, ids):
hub = primary_hub[’hub’][0]
hub_key = primary_hub[’primary_key’][0]

40

for id_keys, id_values in ids.iterrows():
main_id = id_values[0]
main_query = "insert into {} ({}) values ({});

(cont.)".format(hub, hub_key, main_id)
engine.execute(main_query)
for hub_keys, hub_values in secondary_hubs.

(cont.)iterrows():
secondary_hub = hub_values[0]
secondary_key = hub_values[1]
query = "insert into {} ({}) values ({});"

(cont.).format(secondary_hub,
(cont.)secondary_key, main_id)

engine.execute(query)
for hub_keys, hub_values in secondary_hubs.

(cont.)iterrows():
secondary_hub = hub_values[0]
secondary_key = hub_values[1]
many_to_many_query = "insert into many_{}

(cont.)_has_many_{} ({}_{}, {}_{}, {})
(cont.)values ({}, {}, 0);".format(hub,
(cont.) secondary_hub, hub_key, hub,
(cont.)secondary_key, secondary_hub,
(cont.)secondary_key, main_id, main_id)

engine.execute(many_to_many_query)

def control_search(df, destination_name):
columns = df.loc[df[’destination’] ==

(cont.)destination_name]
return columns[’name’]

def df_search(df, id_column, id_to_check, columns,
(cont.)column_array, value_array):
result = df.loc[df[id_column] == id_to_check]
values = result[columns].values
value_array.append(values)
value_array = value_array[0].tolist()
for entry in value_array:

column_array.append(columns)

def adding_keys_to_arrays(column_array, value_array,
(cont.)primary_key_name, foreign_key_name,
(cont.)foreign_key_value):
column_array.insert(0, primary_key_name)

41

column_array.append(foreign_key_name)

value_array.insert(0, 0)
value_array.append(foreign_key_value)

def building_query(column_array, value_array,
(cont.)destination_table):
column_array = tuple(column_array)
value_array = tuple(value_array)

column_query = "insert into {} {} values".format(
(cont.)destination_table, column_array)

column_query = column_query.replace("’", "")

full_query = column_query + ’{}’.format(
(cont.)value_array)

return full_query

setting_up_the_hubs_and_links(primary_hub,
(cont.)secondary_hubs, ids)

for keys, values in destination_and_key.iterrows():
columns = control_search(column_controller, values

(cont.)[0])
for index, id in ids.iterrows():

column_array = []
value_array = []
df_search(df, source_key, id[0], columns,

(cont.)column_array, value_array)

for i in range(0, len(column_array)):
query_column_array = list(column_array[i])
query_value_array = list(value_array[0][i

(cont.)])
adding_keys_to_arrays(query_column_array,

(cont.)query_value_array, ’id’, ’{}’.
(cont.)format(values[1]), id[0])

query = building_query(query_column_array,
(cont.) query_value_array, ’{}’.format(
(cont.)values[0]))

engine.execute(query)

42

.6 Appendix F

.6.1 serums-blockchain-master

Hyperledger Fabric meets Kubernetes Fabric Meets K8S
What is this? This repository contains a couple of Helm charts to:

• Configure and launch the whole HL Fabric network, either:

– A simple one, one peer per organisation and Solo orderer

– Or scaled up one, multiple peers per organization and Kafka or Raft
orderer

• Populate the network:

– Create the channels, join peers to channels, update channels for Anchor
peers

– Install/Instantiate all chaincodes, or some of them, or upgrade them to
newer version

• Backup and restore the state of whole network

Who made this?
This work is a result of collaborative effort between APG and Accenture NL.
We had implemented these Helm charts for our project’s needs, and as the

results looks very promising, decided to share the source code with the HL Fabric
community. Hopefully it will fill a large gap! Special thanks to APG for allowing
opening the source code.

We strongly encourage the HL Fabric community to take ownership of this
repository, extend it for further use cases, use it as a test bed and adapt it to the Fab-
ric provided samples to get rid of endless Docker Compose files and Bash scripts.

License
This work is licensed under the same license with HL Fabric;
Requirements

• A running Kubernetes cluster, Minikube should also work, but not tested

• HL Fabric binaries

• Helm, developed with 2.11, newer 2.xx versions should also work

• jq 1.5+ and yq 2.6+

• Argo, both CLI and Controller

• Minio, only required for backup/restore flows

• Run all the commands in fabric-kube folder

43

https://raft-fabric-kube.s3-eu-west-1.amazonaws.com/images/fabric_meets_k8s.png
https://www.apg.nl/en
https://www.accenture.com/nl-en
https://hyperledger-fabric.readthedocs.io/en/release-1.4/install.html
https://github.com/helm/helm/releases/tag/v2.11.0
https://stedolan.github.io/jq/download/
https://pypi.org/project/yq/
https://github.com/argoproj/argo/blob/master/demo.md
https://github.com/argoproj/argo/blob/master/ARTIFACT_REPO.md

Network Architecture

• Simple Network Architecture: Simple Network

• Scaled Up Kafka Network Architecture: Scaled Up Network

• Scaled Up Raft Network Architecture: Scaled Up Raft Network

Note: Due to TLS, transparent load balancing is not possible with Raft orderer
as of Fabric 1.4.1.

Launching The Network First install chart dependencies, you need to do this
only once:

$ helm repo add kafka http://storage.googleapis.
(cont.)com/kubernetes-charts-incubator

$ helm dependency update ./hlf-kube/

Then create necessary stuff:

$./init.sh ./samples/simple/ ./samples/chaincode/

This script:

• Creates the Genesis block using genesisProfile defined innetwork.yaml file
in the project folder

• Creates crypto material using cryptogen based on crypto-config.yaml file in
the project folder

• Creates channel artifacts by iterating over channels in network.yaml using
configtxgen

• Compresses chaincodes into tar archives by iterating over chaincodes in net-
work.yaml Copies everything created into main chart folder: hlf-kube

Now, we are ready to launch the network:

$ helm install ./hlf-kube --name hlf-kube -f
(cont.)samples/simple/network.yaml -f samples/
(cont.)simple/crypto-config.yaml

This chart creates all the above mentioned secrets, pods, services, etc. cross
configures them and launches the network in unpopulated state.

Wait for all pods are up and running:

44

https://s3-eu-west-1.amazonaws.com/raft-fabric-kube/images/HL_in_Kube_simple.png
https://s3-eu-west-1.amazonaws.com/raft-fabric-kube/images/HL_in_Kube_scaled.png
https://raft-fabric-kube.s3-eu-west-1.amazonaws.com/images/HL_in_Kube_raft.png

$ kubectl get pod --watch

In a few seconds, pods will come up: Screenshot_pods Congrulations you have
a running HL Fabric network in Kubernetes!

Creating channels
Next lets create channels, join peers to channels and update channels for An-

chor peers:

$ helm template channel-flow/ -f samples/simple/
(cont.)network.yaml -f samples/simple/crypto-
(cont.)config.yaml | argo submit - --watch

Wait for the flow to complete, finally you will see something like this: Screen-
shot_channel_flow Installing chaincodes

Next lets install/instantiate/invoke chaincodes

$ helm template chaincode-flow/ -f samples/simple/
(cont.)network.yaml -f samples/simple/crypto-
(cont.)config.yaml | argo submit - --watch

Wait for the flow to complete, finally you will see something like this: Screen-
shot_chaincode_flow

Install steps may fail even many times, never mind about it, it’s a known Fabric
bug, the flow will retry it and eventually succeed.

Lets assume you had updated chaincodes and want to upgrade them in the
Fabric network. Firt update chaincode ‘tar‘ archives:

$./prepare_chaincodes.sh ./samples/simple/ ./
(cont.)samples/chaincode/

Then make sure chaincode ConfigMaps are updated with new chaincode tar
archives:

$ helm upgrade hlf-kube ./hlf-kube -f samples/
(cont.)simple/network.yaml -f samples/simple/
(cont.)crypto-config.yaml

Or alternatively you can update chaincode ConfigMaps directly:

$ helm template -f samples/simple/network.yaml -x
(cont.)templates/chaincode-configmap.yaml ./hlf
(cont.)-kube/ | kubectl apply -f -

Next invoke chaincode flow again with a bit different settings:

45

https://s3-eu-west-1.amazonaws.com/raft-fabric-kube/images/Screenshot_pods.png
https://s3-eu-west-1.amazonaws.com/raft-fabric-kube/images/Screenshot_channel_flow.png
https://s3-eu-west-1.amazonaws.com/raft-fabric-kube/images/Screenshot_channel_flow.png
https://s3-eu-west-1.amazonaws.com/raft-fabric-kube/images/Screenshot_chaincode_flow.png
https://s3-eu-west-1.amazonaws.com/raft-fabric-kube/images/Screenshot_chaincode_flow.png
https://jira.hyperledger.org/browse/FAB-15026
https://jira.hyperledger.org/browse/FAB-15026

$ helm template chaincode-flow/ -f samples/simple/
(cont.)network.yaml -f samples/simple/crypto-
(cont.)config.yaml -f chaincode-flow/values.
(cont.)upgrade.yaml --set chaincode.version=2.0
(cont.) | argo submit - --watch

All chaincodes are upgraded to version 2.0! Screenshot_chaincode_upgade_all
Lets upgrade only the chaincode named very-simple to version 3.0:

$ helm template chaincode-flow/ -f samples/simple/
(cont.)network.yaml -f samples/simple/crypto-
(cont.)config.yaml -f chaincode-flow/values.
(cont.)upgrade.yaml --set chaincode.version=3.0
(cont.) --set flow.chaincode.include={very-
(cont.)simple} | argo submit - --watch

Chaincode very-simple is upgarded to version 3.0! Screenshot_chaincode_upgade_single
Scaled-up Kafka network Now, lets launch a scaled up network backed by a

Kafka cluster.
First tear down everything:

$ argo delete --all
$ helm delete hlf-kube --purge

Wait a bit until all pods are terminated:

$ kubectl get pod --watch

Then create necessary stuff:

$./init.sh ./samples/scaled-kafka/ ./samples/
(cont.)chaincode/

Lets launch our scaled up Fabric network:

$ helm install ./hlf-kube --name hlf-kube -f
(cont.)samples/scaled-kafka/network.yaml -f
(cont.)samples/scaled-kafka/crypto-config.yaml
(cont.)-f samples/scaled-kafka/values.yaml

Again lets wait for all pods are up and running:

$ kubectl get pod --watch

This time, in particular wait for 4 Kafka pods and 3 ZooKeeper pods are run-
ning and ‘ready‘ count is 1/1. Kafka pods may crash and restart a couple of times,

46

https://s3-eu-west-1.amazonaws.com/raft-fabric-kube/images/Screenshot_chaincode_upgade_all.png
https://s3-eu-west-1.amazonaws.com/raft-fabric-kube/images/Screenshot_chaincode_upgade_single.png

this is normal as ZooKeeper pods are not ready yet, but eventually they will all
come up. Screenshot_pods_kafka

Congratulations you have a running scaled up HL Fabric network in Kuber-
netes, with 3 Orderer nodes backed by a Kafka cluster and 2 peers per organisation.
Your application can use them without even noticing there are 3 Orderer nodes and
2 peers per organisation.

Lets create the channels:

$ helm template channel-flow/ -f samples/scaled-
(cont.)kafka/network.yaml -f samples/scaled-
(cont.)kafka/crypto-config.yaml | argo submit -
(cont.) --watch

And install chaincodes:

$ helm template chaincode-flow/ -f samples/scaled-
(cont.)kafka/network.yaml -f samples/scaled-
(cont.)kafka/crypto-config.yaml | argo submit -
(cont.) --watch

Scaled-up Raft network
Now, lets launch a scaled up network based on three Raft orderer nodes span-

ning two Orderer organisations. This sample also demonstrates how to enable TLS
and use actual domain names for peers and orderers instead of internal Kubernetes
service names. Enabling TLS globally is mandatory as of Fabric 1.4.1. Hopefully
will be resolved soon.

For TLS, we need hostAliases support in Argo workflows and also in Argo
CLI, which is implemented but not released yet. You can install Argo controller
from Argo repo with the below command. We have built Argo CLI binary from
Argo repo for Linux which can be downloaded from here. Use at your own risk!

$ kubectl apply -n argo -f https://raw.
(cont.)githubusercontent.com/argoproj/argo/
(cont.)master/manifests/install.yaml

Compare scaled-raft-tls/configtx.yaml with other samples, in particular it uses
actual domain names like _peer0.atlantis.com_ instead of internal Kubernetes ser-
vice names like_hlf-peer–atlantis–peer0_. This is necessary for enabling TLS since
otherwise TLS certificates won’t match service names.

Also in network.yaml file, there are two additional settings. As we pass this
file to all Helm charts, it’s convenient to put these settings into this file.

$ tlsEnabled: true
$ useActualDomains: true

47

https://s3-eu-west-1.amazonaws.com/raft-fabric-kube/images/Screenshot_pods_kafka.png
https://jira.hyperledger.org/browse/FAB-15648
https://github.com/argoproj/argo/issues/1265
https://raft-fabric-kube.s3-eu-west-1.amazonaws.com/argo/argo-linux-amd64

First tear down everything:

$ argo delete --all
$ helm delete hlf-kube --purge

Wait a bit until all pods are terminated:

$ kubectl get pod --watch

Then create necessary stuff:

$./init.sh ./samples/scaled-raft-tls/ ./samples/
(cont.)chaincode/

Lets launch our Raft based Fabric network in _broken_ state:

$ helm install ./hlf-kube --name hlf-kube -f
(cont.)samples/scaled-raft-tls/network.yaml -f
(cont.)samples/scaled-raft-tls/crypto-config.
(cont.)yaml

The pods will start but they cannot communicate to each other since domain
names are unknown.

Run this command to collect the host aliases:

$ kubectl get svc -l addToHostAliases=true -o
(cont.)jsonpath=’{"hostAliases:\n"}{range..
(cont.)items[*]}- ip: {.spec.clusterIP}{"\n"}
(cont.)hostnames: [{.metadata.labels.fqdn}]{"\n
(cont.)"}{end}’ > samples/scaled-raft-tls/
(cont.)hostAliases.yaml

Or this one, which is much convenient:

$./collect_host_aliases.sh ./samples/scaled-raft-
(cont.)tls/

Let’s check the created hostAliases.yaml file:

$ cat samples/scaled-raft-tls/hostAliases.yaml

The output will be something like:

hostAliases:
- ip: 10.0.110.93

hostnames: [orderer0.groeifabriek.nl]
- ip: 10.0.32.65

48

hostnames: [orderer1.groeifabriek.nl]
- ip: 10.0.13.191

hostnames: [orderer0.pivt.nl]
- ip: 10.0.88.5

hostnames: [peer0.atlantis.com]
- ip: 10.0.88.151

hostnames: [peer1.atlantis.com]
- ip: 10.0.217.95

hostnames: [peer10.aptalkarga.tr]
- ip: 10.0.252.19

hostnames: [peer9.aptalkarga.tr]
- ip: 10.0.64.145

hostnames: [peer0.nevergreen.nl]
- ip: 10.0.15.9

hostnames: [peer1.nevergreen.nl]

The IPs are internal ClusterIPs of related services. Important point here is,
as opposed to pod ClusterIPs, service ClusterIPs are stable, they won’t change if
service is not deleted and re-created.

Next, let’s update the network with this host aliases information. These entries
goes into pods’ /etc/hosts file via Pod hostAliases spec.

$ helm upgrade hlf-kube ./hlf-kube -f samples/
(cont.)scaled-raft-tls/network.yaml -f samples/
(cont.)scaled-raft-tls/crypto-config.yaml -f
(cont.)samples/scaled-raft-tls/hostAliases.yaml

Again lets wait for all pods are up and running:

$ kubectl get pod --watch

Congrulations you have a running scaled up HL Fabric network in Kubernetes,
with 3 Raft orderer nodes spanning 2 Orderer organizations and 2 peers per orga-
nization. But unfortunately, due to TLS, your application cannot use them with
transparent load balancing, you need to connect to relevant peer and orderer ser-
vices separately.

Lets create the channels:

$ helm template channel-flow/ -f samples/scaled-
(cont.)raft-tls/network.yaml -f samples/scaled-
(cont.)raft-tls/crypto-config.yaml -f samples/
(cont.)scaled-raft-tls/hostAliases.yaml | argo
(cont.)submit - --watch

49

https://kubernetes.io/docs/concepts/services-networking/add-entries-to-pod-etc-hosts-with-host-aliases/

And install chaincodes:

$ helm template chaincode-flow/ -f samples/scaled-
(cont.)raft-tls/network.yaml -f samples/scaled-
(cont.)raft-tls/crypto-config.yaml -f samples/
(cont.)scaled-raft-tls/hostAliases.yaml | argo
(cont.)submit - --watch

Configuration
There are basically 2 configuration files: crypto-config.yaml and network.yaml.

• crypto-config.yaml

– This is Fabric’s native configuration for cryptogen tool. We use it to
define the network architecture. We honour OrdererOrgs, PeerOrgs,
Template.Count in PeerOrgs (peer count) and even Template.Start

OrdererOrgs:
- Name: Groeifabriek

Domain: groeifabriek.nl
Specs:

- Hostname: orderer
PeerOrgs:

- Name: Karga
Domain: aptalkarga.tr
EnableNodeOUs: true
Template:

Start: 9 # we also honour Start
Count: 1

Users:
Count: 1

• network.yaml

– This file defines how network is populated regarding channels and chain-
codes

network:
only used by init script to create genesis

(cont.)block
genesisProfile: OrdererGenesis

50

defines which organizations will join to which
(cont.) channels

channels:
- name: common

all peers in these organizations will join
(cont.) the channel

orgs: [Karga, Nevergreen, Atlantis]
- name: private-karga-atlantis

all peers in these organizations will join
(cont.) the channel

orgs: [Karga, Atlantis]
defines which chaincodes will be installed

(cont.)to which organizations
chaincodes:

- name: very-simple
chaincode will be installed to all

(cont.)peers in these organizations
orgs: [Karga, Nevergreen, Atlantis]
at which channels are we instantiating

(cont.)/upgrading chaincode?
channels:
- name: common

chaincode will be instantiated/
(cont.)upgraded using the first
(cont.)peer in the first
(cont.)organization

chaincode will be invoked on all
(cont.)peers in these organizations

orgs: [Karga, Nevergreen, Atlantis]
policy: OR(’KargaMSP.member’,’

(cont.)NevergreenMSP.member’,’
(cont.)AtlantisMSP.member’)

- name: even-simpler
orgs: [Karga, Atlantis]
channels:
- name: private-karga-atlantis

orgs: [Karga, Atlantis]
policy: OR(’KargaMSP.member’,’

(cont.)AtlantisMSP.member’)

For chart specific configuration, please refer to the comments in the relevant
values.yaml files.

TLS TLS

51

https://raft-fabric-kube.s3-eu-west-1.amazonaws.com/images/HL_in_Kube_TLS.png

Using TLS is a two step process. We first launch the network in broken state,
then collect ClusterIPs of services and attach them to pods as DNS entries using
pod hostAliases spec.

Important point here is, as opposed to pod ClusterIPs, service ClusterIPs are
stable, they won’t change if service is not deleted and re-created.

Backup Restore Requirements

• Persistence should be enabled in relevant components (Orderer, Peer, CouchDB)

• Configure Argo for some artifact repository. Easiest way is to install Minio

• An Azure Blob Storage account with a container named hlf-backup (config-
urable)

At the moment, backups can only be stored at Azure Blob Storage but it’s quite
easy to extend backup/restore flows for other mediums, like AWS S3. See bottom
of backup-workflow.yaml.

IMPORTANT: Backup flow does not backup contents of Kafka cluster, if you
are using Kafka orderer you need to manually back it up. In particular, Kafka
Orderer with some state cannot handle a fresh Kafka installation, see this (Jira
ticket), hopefully Fabric guys will fix this soon.

Backup Restore Flow
First lets create a persistent network:

$./init.sh ./samples/simple-persistent/ ./samples
(cont.)/chaincode/

$ helm install --name hlf-kube -f samples/simple-
(cont.)persistent/network.yaml -f samples/
(cont.)simple-persistent/crypto-config.yaml -f
(cont.)samples/simple-persistent/values.yaml ./
(cont.)hlf-kube

Again lets wait for all pods are up and running, this may take a bit longer due
to provisioning of disks.

$ kubectl get pod --watch

Then populate the network, you know how to do it :)
Backup
Start backup procedure and wait for pods to be terminated and re-launched with

Rsync containers.

$ helm upgrade hlf-kube --set backup.enabled=true
(cont.)-f samples/simple-persistent/network.
(cont.)yaml -f samples/simple-persistent/crypto
(cont.)-config.yaml -f samples/simple-
(cont.)persistent/values.yaml ./hlf-kube

52

https://kubernetes.io/docs/concepts/services-networking/add-entries-to-pod-etc-hosts-with-host-aliases/
https://github.com/argoproj/argo/blob/master/ARTIFACT_REPO.md
https://jira.hyperledger.org/browse/FAB-15541

$ kubectl get pod --watch

Then take backup:

$ helm template -f samples/simple-persistent/
(cont.)crypto-config.yaml --set backup.target.
(cont.)azureBlobStorage.accountName=<your
(cont.)account name> --set backup.target.
(cont.)azureBlobStorage.accessKey=<your access
(cont.)key> backup-flow/ | argo submit - --
(cont.)watch

Screenshot_backup_flow
This will create a folder with default ‘backup.key‘ (html formatted date yyyy-

mm-dd), in Azure Blob Storage and hierarchically store backed up contents there.
Finally go back to normal operation:

$ helm upgrade hlf-kube -f samples/simple-
(cont.)persistent/network.yaml -f samples/
(cont.)simple-persistent/crypto-config.yaml -f
(cont.)samples/simple-persistent/values.yaml ./
(cont.)hlf-kube

$ kubectl get pod --watch

Restore
Start restore procedure and wait for pods to be terminated and re-launched with

Rsync containers.

$ helm upgrade hlf-kube --set restore.enabled=true
(cont.) -f samples/simple-persistent/network.
(cont.)yaml -f samples/simple-persistent/crypto
(cont.)-config.yaml -f samples/simple-
(cont.)persistent/values.yaml ./hlf-kube

$ kubectl get pod --watch

Then restore from backup:

$ helm template --set backup.key=’<backup key>’ -f
(cont.) samples/simple-persistent/crypto-config
(cont.).yaml --set backup.target.
(cont.)azureBlobStorage.accountName=<your
(cont.)account name> --set backup.target.
(cont.)azureBlobStorage.accessKey=<your access
(cont.)key> restore-flow/ | argo submit - --
(cont.)watch

53

https://s3-eu-west-1.amazonaws.com/raft-fabric-kube/images/Screenshot_backup_flow.png

Screenshot_restore_flow
Finally go back to normal operation:

$ helm upgrade hlf-kube -f samples/simple-
(cont.)persistent/network.yaml -f samples/
(cont.)simple-persistent/crypto-config.yaml -f
(cont.)samples/simple-persistent/values.yaml ./
(cont.)hlf-kube

$ kubectl get pod --watch

Limitations

• TLS

– Transparent load balancing is not possible with TLS as of Fabric 1.4.1.
So, instead of Peer-Org, Orderer-Org or Orderer-LB services, you need
to connect to individual Peer and Orderer services

• Multiple Fabric networks in the same Kubernetes cluster

– This is possible but they should be run in different namespaces. We
do not use Helm release name in names of components, so if multiple
instances of Fabric network is running in the same namespace, names
will conflict.

FAQ and more Please see [FAQ](FAQ.md) page for further details. Also this
post at Accenture’s open source blog provides some additional information like
motivation, how it works, benefits regarding NFR’s, etc.

.7 Appendix G

.7.1 serums-frontend-master

Build the docker image, then expose port 3000. You need to set the backend url in
/api/getRules.js. For example: http://your-domain/v1/api

.8 Appendix H

.8.1 serums-backend-master

Backend to connect to the blockchain of serums.
To run, build the docker image, and run it. Needs /tmp/crypto to contain all

the cryptographic artifacts, and the connection profile set to /usr/src/app/src/con-
fig/network.json

This runs the backend on port 3001.

54

https://s3-eu-west-1.amazonaws.com/raft-fabric-kube/images/Screenshot_restore_flow.png
https://accenture.github.io/blog/2019/06/25/hl-fabric-meets-kubernetes.html

.9 Appendix I

.9.1 serums-ansible-master

1. First you need a kubernetes cluster (the ansible scripts in this folder can
server as a baseline, although they may need some updating)

2. You need docker installed

3. If not yet done, generate the blockchain artifacts using serums_manager.sh
init in serums-blockchain. If you regenerate them compared to defaults,
you need to update the connection-profile.json in serums-blockchain/hlf-
explorer, because the paths (especially for the private keys) will have changed

4. You need a docker registry setup. On bare metal, you can use this, other
services such as GCP or AWS will provide one for you

5. Edit the address of the backend public endpoint serums-frontend/api/getRules.js,
and change the URLs in ingress-template.yaml to correspond to your do-
mains

6. Run create_app.sh. This script takes as first argument the location in which
serums-blockchain, serums-backend and serums-frontend folders are. Sec-
ond argument is the address of your docker registry, which defaults to Trow

.10 Appendix J

import matplotlib
matplotlib.use(’Agg’)
import pandas as pd
import numpy as np
import getpass
import argparse
import sys
import subprocess
import re
import os
from sqlalchemy import create_engine
from dateutil.parser import parse
import pandas_profiling

parser = argparse.ArgumentParser()
parser.add_argument("-u", "--user", help="Set user")
parser.add_argument("-p", "--password", help="Set

(cont.)password", action="store_true")

55

https://blog.container-solutions.com/installing-a-registry-on-kubernetes-quickstart

parser.add_argument("-d", "--database", help="Select
(cont.)MySQL database to connect to")

parser.add_argument("-t", "--table", help="Select
(cont.)table to process")

args = parser.parse_args()

if(args.password):
try:

pwd = getpass.getpass()
except Exception as error:

print(’ERROR’, error)
else:

print(’Password entered’)

engine = create_engine("mysql+pymysql://{}:{}
(cont.)@localhost/{}".format(args.user, pwd, args.
(cont.)database))

connection = engine.connect()

sql = "select * from {}".format(args.table)

df = pd.read_sql(sql, con=connection)

pandas_profiling.ProfileReport(df)

profile = pandas_profiling.ProfileReport(df)
rejected_variables = profile.get_rejected_variables(

(cont.)threshold=0.9)

profile = pandas_profiling.ProfileReport(df)
profile.to_file(outputfile="/api_output/{}.html".

(cont.)format(args.table))

56

	Executive Summary
	Introduction
	Smart Patient Health Format
	Technical Implementation
	Overview
	The St.Andrews Virtual Machine
	Introduction to the Virtual Machines
	Signing into Fracas
	Install Docker
	Install Cloudera CDH Image
	Python and Pandas
	PyHive

	Storage
	Choice of Technologies
	Data Lake Setup
	Converting Raw Files to Data Vault

	Access Control and Blockchain
	Overview of Blockchain and Access Controls
	Hyperledger Fabric

	Blockchain Setup
	Machine Learning and Metadata
	Overview of Machine Learning and Metadata Extraction
	Machine Learning and Metadata in Serums
	Machine Learning and Metadata Setup

	Data Lake
	General Data Lake Description
	Data Lake Zones

	Rapid Information Factory
	General Rapid Information Factory Description
	What is R-A-P-T-O-R?

	Appendices
	Appendix A - 0100-SERUMS-RIF-DL-Hadoop-Setup
	Appendix B - Adding Files to Raw
	Appendix C - Raw to MySQL
	Appendix D - CSV to MySQL
	Appendix E - Converting to Data Vault
	Appendix F
	serums-blockchain-master

	Appendix G
	serums-frontend-master

	Appendix H
	serums-backend-master

	Appendix I
	serums-ansible-master

	Appendix J

