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Executive Summary

This deliverable describes that differentially private distributed deep learning frame-
work reported in D3.1 can be complemented by an analytical framework to evaluate
informational privacy. We suggest an information theoretic approach to quantify
privacy-leakage in-terms of mutual information between private/sensitive data and
the publically released data. At the core of the method lies a variational Bayesian
fuzzy model approximating the uncertain mapping between released noise added
data and private data such that the model is employed for variational approxima-
tion of informational privacy. The deliverable further presents a novel differentially
private semi-supervised transfer learning framework that 1) is able to handle high-
dimensional data and heterogeneity of domains; 2) uses an optimal noise adding
mechanism achieving a given level of privacy-loss bound with the minimum pertur-
bation of the data; 3) does not require an access to private/sensitive source domain
training data for the learning of target domain model; 4) employs deep models to
use data features at different abstraction levels for transferring knowledge across
domains; 5) provides a robustness of the target model towards the perturbations in
source data caused by the privacy requirements demanded by source data owner.
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1. Privacy-Preserving Distributed
Deep Learning (T3.1)

1.1 Summary of Work Reported in D3.1 on “Differen-
tially Private Distributed Deep Learning”

The work reported in D3.1 introduced a privacy-preserving framework for dis-
tributed deep fuzzy learning. Specifically, sufficient conditions for (ε, δ)− differ-
ential privacy of the learning algorithm were derived. Following the entropy based
approach of [1], the optimal noise distribution that minimizes the expected noise
magnitude together with satisfying the sufficient conditions for (ε, δ)−differential
privacy was derived. A comparison of the derived noise adding mechanism with
the classical Gaussian mechanism was made and a multi-fold reduction (e.g. by
more than 4 times in the high privacy regime) in the magnitude of noise over the
Gaussian mechanism was observed. To study distributed deep learning problem
in private setting, a deep model, formed by a composition of a finite number of
Takagi-Sugeno fuzzy filters, was considered. Variational Bayes, a widely used
Bayesian inference method, was applied for the learning of deep fuzzy model. We
considered a particular configuration of the deep fuzzy model, referred to as deep
fuzzy autoencoder, for data representation learning. The flexibility and robustness
features offered by fuzzy sets and fuzzy rules were next leveraged to facilitate a
distributed learning from the data locally owned by different participant. A fuzzy
set in the multi-dimensional real space was associated to each local deep fuzzy
model. The post-processing invariance property of differential privacy allowed to
build a global fuzzy rule-based classifier that aggregates the fuzzy sets associated
to local private deep models using a logical operator.

The motivation of the approach was derived from the idea of employing fuzzy
sets and rules based systems for an optimal differentially private data representation
learning at varying abstraction levels using variational Bayesian deep fuzzy models
in a distributed setting. We hypothesize that a privacy-preserving framework for
distributed learning of deep models could be benefitted from

1. an analytical optimization of differentially private noise adding mechanism
to optimize the privacy-utility trade-off;
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2. an incorporation of a statistical noise model in variational Bayesian inference
of deep models for a robustness towards noise;

3. flexible and robust combination of local private deep models by means of
fuzzy sets and fuzzy rules.

The work provided an (ε, δ)−differentially private noise adding mechanism that re-
sults in multi-fold reduction in noise magnitude over the classical Gaussian mech-
anism and thus leads to an increased utility for a given level of privacy. An archi-
tecture for distributed form of differentially private learning was presented where a
privacy wall separates the private local training data from the globally shared data,
and fuzzy sets and fuzzy rules are used to aggregate robustly the local deep models
for building the global model.

The proposed methodology was evaluated via performing experiments. The
aim of the experiments was to

1. study the effect of privacy level on the classification accuracy of the proposed
method,

2. compare the proposed noise adding mechanism with the classical Gaussian
mechanism in terms of classification accuracy,

3. compare the non-private version of the proposed distributed deep fuzzy mod-
els based classifier with the classical machine learning methods in classify-
ing high-dimensional data.

The experiments on “MNIST”, “Freiburg Groceries”, “Caltech-101”, and “Caltech-
256” datasets have validated the competitive performance of the proposed method.

1.2 Limitations of Differential Privacy and Motivation of
Informational Privacy

Differential privacy guarantees that an adversary, by virtue of presence or absence
of an individual’s data in the dataset, can’t draw any conclusions about an indi-
vidual from the released output of the analysis algorithm. Differential privacy,
however, doesn’t always adequately limit inference about participation of a single
record in the database [2]. Differential privacy requirement does not necessarily
constrain the information leakage from a data set [3]. Correlation among records
of a dataset would degrade the expected privacy guarantees of differential privacy
mechanism [4]. These limitations of differential privacy motivate an information
theoretic approach to privacy where privacy is quantified by the mutual informa-
tion between sensitive information and the released data [3, 5–8]. A data release
mechanism aims to provide useful data available while simultaneously limiting any
reveled sensitive information. The data perturbation approach uses a random noise
adding mechanism to preserve privacy, however, results in distortion of useful data
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and thus utility of any subsequent machine learning and data analytics algorithm
is adversely affected. There remains the challenge of studying and optimizing
privacy-utility tradeoff especially in the case when statistical distributions of data
are unknown. Information theoretic privacy can be optimized theoretically using
a prior knowledge about data statistics. However, in practice, a prior knowledge
(such as joint distributions of public and private variables) is missing and there-
fore a data-driven approach based on generative adversarial networks has been
suggested [9]. The data-driven approach of [9] leverages recent advancements in
generative adversarial networks to allow learning the parameters of the privatiza-
tion mechanism. However, the framework of [9] is limited to only binary type of
sensitive variables. A similar approach [10] applicable to arbitrary distributions
(discrete, continuous, and/or multivariate) of variables employs adversarial train-
ing to perform a variational approximation of mutual information privacy. The
approach of approximating mutual information via a variational lower bound was
also used in [11].

1.3 A Novel Information Theoretic Approach to Evalua-
tion of Privacy-Leakage in Distributed Deep Learning

A novel approach is introduced to study the informational privacy of a data release
mechanism. The privacy-leakage problem is mathematically formulated where a
sample of sensitive or private data x (x ∈ X ⊆ Rn), corresponding observed data
vector y (y ∈ Y ⊆ Rp), and the released data vector z (z ∈ Z ⊆ Rp) are modeled
as random variables. A privacy-preserving mechanism to release data vector z
will add random noise v ∈ Rp (sampled from a density function, say q(v)) to the
observed data vector y, i.e.,

z(v; y) = y + v. (1.1)

A relevant problem here is to evaluate the privacy-leakage in-terms of mutual in-
formation I(x; z). The privacy-leakage I(x; z) can be analytically derived for a
known data distribution PX,Y (x, y) over the space X × Y . The framework pro-
posed in this study, however without knowing data distribution, allows to evaluate
privacy-leakage. This is done as follows:

1. The privacy of sensitive data is preserved via adding random noise (sampled
from derived optimal distribution) to the data observations, i.e., eq. (1.1).
Only the noise added data observations are meant to be publicly released.

2. Given a finite set of private-public data pairs {(xi, zi) | i ∈ {1, · · · , N}},
a stochastic fuzzy model G is built using variational Bayesian methodology
such that xi = G(zi) + vi, where vi ∈ Rn is the disturbance vector affecting
the data model.
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3. A lower bound on privacy-leakage is derived as a functional of distributions
characterizing the data model, i.e., I(x; z) ≥ IL(q(α, β)), where q(α, β)
is an arbitrary probability density function on parameters α and β which
characterizes the distributions related to data model: x = G(z) + v.

4. An approximation to I(x; z) is provided via maximizing IL w.r.t. q(α, β),
i.e., Î(x; z) = maxq(α,β) IL(q(α, β)).

The significant feature of the proposed framework is its generality for any unknown
data distribution PX,Y and privacy-leakage is computed analytically without rely-
ing on the training of black-box models (e.g. adversarial networks [10]) for ap-
proximating distributions.

1.3.1 Variational Bayesian Fuzzy Data Modeling

A Takagi-Sugeno fuzzy filter (F : Rq → R) is considered that maps q−dimensional
real-space to 1−dimensional real-line. The fuzzy filter consists of M number of
rules of following type:

If s is Am, then F(s) = cm, m ∈ {1, · · · ,M}

where s ∈ Rq, cm ∈ R, and the fuzzy set Am is defined, without loss of generality,
with the following Gaussian membership function

µAm(s) = exp
(
−0.5 ‖s− am‖2W

)
(1.2)

where am ∈ Rq is the mean of Am, W ∈ Rq×q(W > 0), and ‖s‖2P
def
= sTPs. For

a given input s ∈ Rq, the degree of fulfillment of them−th rule is given by µAm(s).
The output of the filter to input vector s is computed by taking the weighted average
of the output provided by each rule, i.e.,

F(s) =

∑M
m=1 µAm(s)cm∑M
m=1 µAm(s)

. (1.3)

Definition 1 (A Stochastic Fuzzy Model (FM)) A stochastic fuzzy model, G : Rp →
Rn, maps an input vector z ∈ Rp to the output vector G(z) ∈ Rn given as

G(z) =
[
F1(V T z) · · · Fn(V T z)

]T ∈ Rn (1.4)

where V ∈ Rp×q (with q ≤ p) is a matrix, Fk (k ∈ {1, 2, · · · , n}) is a Takagi-
Sugeno fuzzy filter (1.3), with consequent parameters being considered as random
variables and being represented by αk = [ ck,1 · · · ck,M ]T ∈ RM , such that

Fk(s) =

∑M
m=1 µAm(s)ck,m∑M
m=1 µAm(s)

. (1.5)
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Given a finite set of input-output pairs D =
{

(xi, zi) | i ∈ {1, · · · , N}
}

, the data
is modeled through a stochastic fuzzy model G as

xi = G(zi) + vi (1.6)

=
[
F1(V T zi) · · · Fn(V T zi)

]T
+ vi. (1.7)

The following notation is introduced:

z =
{
zi | zi ∈ Rp, i ∈ {1, · · · , N}

}
(1.8)

a = {am | am ∈ Rq,m ∈ {1, · · · ,M}} (1.9)

fk =
[
Fk(V T z1) · · · Fk(V T zN )

]T ∈ RN (1.10)

αk = [ ck,1 · · · ck,M ]T ∈ RM (1.11)

xk =
[
x1
k · · · xNk

]T ∈ RN (1.12)

vk =
[
v1
k · · · vNk

]T ∈ RN (1.13)

where k ∈ {1, · · · , n}, and xik and vik denote the k−th element of xi and vi re-
spectively. Let Kza ∈ RN×M be a matrix whose (i,m)−th element is given as

(Kza(V,W ))i,m =
exp

(
−0.5

∥∥V T zi − am
∥∥2

W

)
∑M

m=1 exp
(
−0.5 ‖zi − am‖2W

) . (1.14)

It follows from (1.5), (1.14), and (1.11) that

fk = Kzaαk. (1.15)

Also, it can be observed that

xk = Kzaαk + vk. (1.16)

The disturbance vector vk is priori assumed to be Gaussian with mean zero and a
precision of β, i.e.,

p(vk|β) =

(
1/
√

(2π)N (β)−N
)

exp
(
−0.5β‖vk‖2

)
(1.17)

where β > 0 is priori assumed to be Gamma distributed:

p(β; a, b) = (ba/Γ(a)) (β)a−1 exp(−bβ) (1.18)

where a, b > 0. The Gaussian prior is taken over parameter vector αk:

p(αk; mk,Λk) =

(
1/
√

(2π)M |(Λk)−1|
)

exp
(
−0.5(αk −mk)

TΛk(αk −mk)
)

(1.19)

where mk ∈ RM and Λk ∈ RM×M (Λk > 0). Define sets

X
def
= {x1, · · · , xn} (1.20)

α
def
= {α1, · · · , αn} (1.21)
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and consider the marginal probability of data X which is given as

p(X) =

∫
dα dβ p(X, α, β). (1.22)

Let q(α, β) be an arbitrary distribution. The log marginal probability of X can be
expressed as

log(p(X)) =

∫
dα dβ q(α, β) log

(
p(X, α, β)

q(α, β)

)
+

∫
dα dβ q(α, β) log

(
q(α, β)

p(α, β|X)

)
. (1.23)

Define

F (q(α, β),X)
def
=

∫
dα dβ q(α, β) log (p(X, α, β)/q(α, β)) (1.24)

to express (1.23) as

log(p(X)) = F (q(α, β),X) + KL(q(α, β)‖p(α, β|X)) (1.25)

where KL is the Kullback-Leibler divergence of p(α, β|X) from q(α, β) and F ,
referred to as negative free energy, provides a lower bound on the the logarithmic
evidence for the data.

The variational Bayesian approach minimizes the difference (in term of KL di-
vergence) between variational and true posteriors via analytically maximizing neg-
ative free energy F over variational distributions. However, the analytical deriva-
tion requires the following widely used mean-field approximation:

q(α, β) = q(α)q(β) (1.26)

= q(α1) · · · q(αn)q(β). (1.27)

Applying the standard variational optimization technique (as in [12–16]), it can be
verified that the optimal variational distributions maximizing F are as follows:

q∗(αk) =

(
1/

√
(2π)M |(Λ̂k)−1|

)
exp

(
−0.5(αk − m̂k)

T Λ̂k(αk − m̂k)
)
(1.28)

q∗(β) =
(

(b̂)â/Γ(â)
)

(β)â−1 exp(−b̂β) (1.29)

where the parameters (Λ̂k, m̂k, â, b̂) satisfy the following:

Λ̂k = Λk +
(
â/b̂
)

(Kza)TKza (1.30)

m̂k = (Λ̂k)
−1
(

Λkmk +
(
â/b̂
)

(Kza)Txk

)
(1.31)

â = a+ 0.5nN (1.32)

b̂ = b+ 0.5

n∑
k=1

{
‖xk −Kzam̂k‖2 + Tr

(
(Λ̂k)

−1(Kza)TKza

)}
(1.33)
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Algorithm 1 An algorithm for variational Bayesian inference of data model.
Require: Data set D =

{
(xi, zi) | xi ∈ Rn, zi ∈ Rp, i ∈ {1, · · · , N}

}
, the number of rules in a

fuzzy filter M ∈ Z+, the subspace dimension q ∈ Z+ with q ≤ p.
1: Define V ∈ Rp×q such that j−th column of V is equal to eigenvector corresponding to j−th

largest eigenvalue of sample covariance matrix of {zi | i ∈ {1, · · · , N}}.
2: Compute si = V T zi, for i ∈ {1, · · · , N}.
3: The fuzzy sets’ mean values, a = {am | m ∈ {1, · · · ,M}}, are defined as

{am | m ∈ {1, · · · ,M}} = ClusterCentroid({si | i ∈ {1, · · · , N}},M) (1.34)

ClusterCentroid(·) represents the k-means clustering to return M cluster centroids.
4: Define W to be a diagonal matrix such that j−th diagonal element is equal to the inverse of

squared-distance between two most-distant points in the set
{
sij | i ∈ {1, · · · , N}

}
, where sij is

j−th element of si.
5: Compute Kza(V,W ) using (1.14).
6: Choose a = 10−6, b = 10−6,mj = 0,Λj = 10−6I .
7: Initialise â/b̂ = 1.
8: repeat
9: Update {Λ̂k, m̂k | k ∈ {1, · · · , n}}, â, b̂ using (1.30), (1.31), (1.32), (1.33).

10: until (convergence or iterations = 1000)
11: return M = {â, b̂, {m̂k, Λ̂k | k ∈ {1, · · · , n}},a, V,W}.

where Tr(·) denotes the trace operator.
Variational Bayesian inference lends itself to a data modeling algorithm for-

mally stated as Algorithm 1. The optimal distributions q∗(αk) and q∗(β) deter-
mined using Algorithm 1 define a model as stated in Remark 1.

Remark 1 (Model) The model built using Algorithm 1 relates sensitive data vec-
tor x = [x1 · · · xn ]T ∈ Rn to released data vector z ∈ Rp as

xk = k(z)αk + vk, (1.35)

p(vk|β) =
(

1/
√

(2π)(β)−1
)

exp
(
−0.5β|vk|2

)
, (1.36)

p(β; â, b̂) =
(
b̂â/Γ(â)

)
(β)â−1 exp(−b̂β), (1.37)

p(αk; m̂k, Λ̂k) =

(
1/
√

(2π)M |(Λk)−1|
)

exp
(
−0.5(αk − m̂k)

T Λ̂k(αk − m̂k)
)

(1.38)

where k(z) ∈ R1×M is a vector-valued function whose m−th element is given as

(k(z))m =
exp

(
−0.5

∥∥V T z − am
∥∥2

W

)
∑M

m=1 exp
(
−0.5 ‖V T z − am‖2W

) . (1.39)

Here, {â, b̂, {m̂k, Λ̂k | k ∈ {1, · · · , n}},a, V,W} are returned by Algorithm 1.
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1.3.2 Variational Approximation of Informational Privacy

The mutual information between sensitive data vector x and released data vector z
is given as

I(x; z) = H(x)−H(x|z) (1.40)

= H(x) +

∫
X ,Z

p(x, z) log (p(x|z)) dx dz (1.41)

= H(x) + 〈log (p(x|z))〉p(x,z) (1.42)

where H(x), H(x|z) are marginal, conditional entropies respectively and the av-
eraging operator < · >· is defined as

< f(x) >p(x) =

∫
dx p(x)f(x). (1.43)

Result 1 (Variational Approximation of I(x; z)) Assuming the data model as stated
in Remark 1, a variational approximation of I(x; z) is given as

Î(x; z) = (1.44)

H(x)− 0.5n log(2π) + 0.5n
{

Ψ(ā)− log(b̄)
}

− 1

2

(
ā/b̄
) n∑
k=1

〈
|xk − k(z)m̄k|2

〉
p(x,z)

− 1

2

(
ā/b̄
) n∑
k=1

〈
Tr
(
(Λ̄k)

−1(k(z))Tk(z)
)〉
p(z)

− 0.5

n∑
k=1

{
(m̂k − m̄k)

T Λ̂k(m̂k − m̄k) + Tr
(

Λ̂k(Λ̄k)
−1
)
− log

(
|(Λ̄k)−1|
|(Λ̂k)−1|

)}
+ 0.5nM − â log

(
b̄/b̂
)

+ log (Γ(ā)/Γ(â))− (ā− â)Ψ(ā) + (b̄− b̂)
(
ā/b̄
)

where Ψ(·) is the digamma function and the parameters (Λ̄k, m̄k, ā, b̄) satisfy fol-
lowings:

Λ̄k = Λ̂k +
(
ā/b̄
) 〈

(k(z))Tk(z)
〉
p(z)

(1.45)

m̄k = (Λ̄k)
−1
(

Λ̂km̂k +
(
ā/b̄
) 〈

(k(z))Txk
〉
p(x,z)

)
(1.46)

ā = â+ 0.5n (1.47)

b̄ = b̂+
1

2

n∑
k=1

〈
|xk − k(z)m̄k|2

〉
p(x,z)

+
1

2

n∑
k=1

〈
Tr
(
(Λ̄k)

−1(k(z))Tk(z)
)〉
p(z)

(1.48)

Proof: Consider the conditional probability of x which is given as

p(x|z) =

∫
dα dβ p(α, β, x|z) (1.49)
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where α is a set defined as in (1.21). Let q(α, β) be an arbitrary distribution. The
log conditional probability of x can be expressed as

log(p(x|z)) =

∫
dα dβ q(α, β) log (p(x|z)) (1.50)

=

∫
dα dβ q(α, β) log (p(α, β, x|z)/p(α, β|x, z)) (1.51)

=

∫
dα dβ q(α, β) log (p(α, β, x|z)/q(α, β))

+

∫
dα dβ q(α, β) log (q(α, β)/p(α, β|x, z)) . (1.52)

Define

F (q(α, β), x, z)
def
=

∫
dα dβ q(α, β) log (p(α, β, x|z)/q(α, β)) (1.53)

to express (1.52) as

log(p(x|z)) = F (q(α, β), x, z) + KL(q(α, β)‖p(α, β|x, z)) (1.54)

where KL is Kullback-Leibler divergence of p(α, β|x, z) from q(α, β). Using
(1.42),

I(x; z) = H(x) + 〈F (q(α, β), x, z)〉p(x,z) + 〈KL(q(α, β)‖p(α, β|x, z))〉p(x,z) . (1.55)

Since KullbackâĂŞLeibler divergence is always non-zero, it follows from (1.55)
that H(x) + 〈F 〉p(x,z) provides a lower bound on I(x; z) i.e.

I(x; z) ≥ H(x) + 〈F (q(α, β), x, z)〉p(x,z) . (1.56)

Our approach to approximate I(x; z) is to maximize its lower bound with respect
to variational distribution q(α, β). That is, we solve

Î(x; z) = max
q(α,β)

(
H(x) + 〈F (q(α, β), x, z)〉p(x,z)

)
(1.57)

= H(x) + max
q(α,β)

〈F (q(α, β), x, z)〉p(x,z) . (1.58)

For this, consider

F (q(α, β), x, z) = 〈log(p(x|α, β, z))〉q(α,β) + 〈log (p(α, β)/q(α, β))〉q(α,β) .(1.59)

Assuming that x1, · · · , xn are independent,

log(p(x|z, α, β)) =

n∑
k=1

log(p(xk|z, αk, β)). (1.60)

It follows from (1.36) and (1.35) that

log(p(xk|z, αk, β)) = −0.5 log(2π) + 0.5 log(β)− 0.5β|xk − k(z)αk|2.(1.61)
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Using (1.60), (1.61), and (1.26-1.27) in (1.59), we have

F = −0.5n log(2π) + 0.5n 〈log(β)〉q(β) − 0.5 〈β〉q(β)

n∑
k=1

〈
|xk − k(z)αk|2

〉
q(αk)

+

n∑
k=1

〈
log
(
p(αk; m̂k, Λ̂k)/q(αk)

)〉
q(αk)

+
〈

log
(
p(β; â, b̂)/q(β)

)〉
q(β)

. (1.62)

Thus,

〈F 〉p(x,z) = −0.5n log(2π) + 0.5n 〈log(β)〉q(β) − 0.5 〈β〉q(β)

n∑
k=1

〈
|xk|2

〉
p(x)

− 0.5 〈β〉q(β)

n∑
k=1

〈
(αk)

T
〈
(k(z))Tk(z)

〉
p(z)

αk

〉
q(αk)

+ 〈β〉q(β)

n∑
k=1

〈
(αk)

T
〈
(k(z))Txk

〉
p(x,z)

〉
q(αk)

+
n∑
k=1

〈
log
(
p(αk; m̂k, Λ̂k)/q(αk)

)〉
q(αk)

+
〈

log
(
p(β; â, b̂)/q(β)

)〉
q(β)

. (1.63)

Now, 〈F 〉p(x,z) can be maximized w.r.t. q(αk) and q(β) using variational opti-
mization. It can be seen that optimal distributions maximizing 〈F 〉p(x,z) are given
as

q∗(αk) =

(
1/
√

(2π)M |(Λ̄k)−1|
)

exp
(
−0.5(αk − m̄k)

T Λ̄k(αk − m̄k)
)
(1.64)

q∗(β) =
(
(b̄)ā/Γ(ā)

)
(β)ā−1 exp(−b̄β) (1.65)

where the parameters (Λ̄lj , m̄
l
j , āl, b̄l) satisfy (1.45), (1.46), (1.47), (1.48). The

maximum attained value of 〈F 〉p(x,z) is given as

〈F (q∗(α, β), x, z)〉p(x,z) = (1.66)

−0.5n log(2π) + 0.5n
{

Ψ(ā)− log(b̄)
}
− 0.5

(
ā/b̄
) n∑
k=1

〈
|xk − k(z)m̄k|2

〉
p(x,z)

−0.5
(
ā/b̄
) n∑
k=1

〈
Tr
(
(Λ̄k)

−1(k(z))Tk(z)
)〉
p(z)
−

n∑
k=1

KL(q∗(αk)‖p(αk; m̂k, Λ̂k))

−KL(q∗(β)‖p(β; â, b̂))

where Ψ(·) is the digamma function. After substituting the maximum value of
〈F 〉p(x,z) in (1.58) and calculating Kullback-Leibler divergences, we get (1.44).
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2. Privacy-Preserving
Semi-Supervised Transfer and
Multi-Task Approaches (T3.2)

The availability of high quality labelled data is crucial for the success of machine
learning methods. While a single entity may not own massive amount of data, a
collaboration among data-owners regarding sharing of knowledge extracted locally
from their private data can be beneficial. The data privacy concerns and the legal
requirements may not allow a centralization of the data from multiple sources.
Thus, an interest in privacy-preserving machine learning with distributed training
datasets arises. We consider the privacy-preserving distributed machine learning
problem under a scenario that the knowledge extracted from a labelled training
dataset (referred to as “source domain”) is intended to improve the learning of a
classifier trained using a dataset with both unlabelled and very few labelled samples
(referred to as “target domain”) such that source and target domains are allowed
to be heterogeneous. That is, source and target data samples are allowed to differ
in their dimensions and no assumptions are made regarding statistical distributions
of source and target data. The problem of “privacy-preserving semi-supervised
transfer learning” has previously been addressed in the literature from different
prospectives. We focus on the development of a method able to simultaneously
deal with high-dimensional data and heterogeneous domains.

2.1 Background

A lot of research has been carried out in the area of transfer learning. The hetero-
geneous data from source and target domain (i.e. source and target domains have
different feature space and dimensions) can be transformed to a common subspace
by using two different projection matrices. Existing supervised learning methods
(e.g., SVM) can be then employed to learn the projection matrices and the target
domain classifier [17]. It is possible to learn a transformation that maps feature
points from one domain to another using cross-domain constraints formed by re-
quiring that the transformation maps points from the same category (but different
domain) near each other [18]. A study [19] learns projections from each domain
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to a latent space via simultaneously minimizing a notion of domain variance while
maximizing a measure of discriminatory power where Riemannian optimization
techniques are used to match statistical properties between samples projected into
the latent space from different domains. Another study [20] proposes a regularized
unsupervised optimal transportation model to perform the alignment of the repre-
sentations in the source and target domains. The method in [21] uses geodesic flow
to construct an infinite-dimensional feature space that assembles information on
the source domain, on the target domain, and on “phantom” domains interpolating
between source and target domains. Inner products in infinite-dimensional feature
space give rise to a kernel function facilitating the construction of any kernelized
classifiers. Another approach is of an adaptation of source model to the target do-
main via iteratively deleting source-domain samples and adapting the model grad-
ually to the target-domain instances [22]. Boosting-based learning algorithms can
be also used to adaptively assign the training weights to source and target samples
based on their relevance in the training of the classifier [23]. Bayesian learning
can be a framework to study transfer learning through modeling of a joint prior
probability density function for feature-label distributions of the source and target
domains [24]. Deep learning framework is another promising research direction
explored for transfer learning [25–27].

Federated learning techniques allow multiple decentralized actors to build a
common robust machine learning model without sharing their data. However, the
local datasets may contain sensitive information that need to be protected from
model inversion attack [28] and from adversaries with an access to model parame-
ters and knowledge of the training procedure. This goal has been addressed within
the framework of differential privacy [29,30]. Differential Privacy [31,32] is a for-
malism to quantify the degree to which the privacy for each individual in the dataset
is preserved while releasing the output of a data analysis algorithm. Differential
privacy provides a guarantee that an adversary, by virtue of presence or absence
of an individual’s data in the dataset, would not be able to draw any conclusions
about an individual from the released output of the analysis algorithm. This guar-
antee is achieved by means of a randomization of the data analysis process. In the
context of machine learning, randomization is carried out via either adding random
noise to the input or output of the machine learning algorithm or modifying the ma-
chine learning algorithm itself. A limited number of studies exist on differentially
private semi-supervised transfer learning. The authors in [33] suggest an impor-
tance weighting mechanism to preserve the differential privacy of a private dataset
via computing and releasing a weight for each record in an existing public dataset
such that computations on public dataset with weights is approximately equiva-
lent to computations on private dataset. The importance weighting mechanism is
adapted in [34] to determine the weight of a source hypothesis in the process of
constructing informative Bayesian prior for logistic regression based target model.
This method does not allow transferring knowledge across heterogeneous domains
and is limited to binary logistic regression. [35] introduces “private aggregation of
teacher ensembles” approach where an ensemble of “teacher” models is trained on
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disjoint subsets of the sensitive data and a “student” model learns to predict an out-
put chosen by noisy voting among all of the teachers. However, this method doesn’t
consider the heterogeneous domains. Another approach [36–38] is to construct a
differentially private unsupervised generative model for generating a synthetic ver-
sion of the private data, and then releases the synthetic data for a non-private learn-
ing. This technique is capable of effectively handling high-dimensional data in
differential privacy setting, however, can not handle heterogeneous domains. The
study in [39] uses a large public dataset to learn a dimension-reducing represen-
tation mapping which is then applied on private data to obtain a low-dimensional
representation of the private data followed by the learning of a differentially private
predictor. Again, this method is not capable of handling heterogeneous domains.

2.2 Requirements

There is a need of developing a “differentially private semi-supervised transfer
learning" framework that

R1: is capable of handling high-dimensional data and heterogeneity of domains;

R2: optimizes the differential private noise adding mechanism such that for a
given level of privacy, the perturbation in the data is as small as possible;

R3: facilitates a transfer of knowledge from source to target domain without re-
quiring the availability of source domain private training data;

R4: allows employing deep models in source and target domains so that data
features at different abstraction levels can be used to transfer knowledge
across domains, however, without the requirement of the availability of large
amount of data;

R5: provides a robustness of target model towards the perturbations in source
data caused by the privacy requirements demanded by source data owner.

To the best knowledge of authors, there does not exist any study in the literature
addressing sufficiently simultaneously all of the aforementioned five requirements
(i.e. R1-R5). Thus, we present in this study a novel approach to differentially
private semi-supervised transfer learning that fulfills all of the requirements.

2.3 Proposed Methodology

The basic idea of the proposed approach is stated in Fig. 2.1. The salient features
of our approach are following:

• An optimal differentially private noise adding mechanism is used to perturb
the source dataset for preserving its privacy.
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Figure 2.1: The proposed approach to privacy-preserving semi-supervised transfer
learning.

• Both source and target classifiers consist of autoencoders based composi-
tions. A multi-class classifier is presented that employs a wide-deep autoen-
coder for each class to learn data representation. A wide-deep autoencoder
consists of a parallel composition of deep autoencoders and each deep au-
toencoder consists of a nested composition of mappings. An analytical ap-
proach is presented for the learning of the deep autoencoder.

• Since differential privacy will remain immune to any post-processing of
noise added data samples, the perturbed source dataset is used to

– build a differentially private source domain classifier,

– compute a differentially private source domain latent subspace transformation-
matrix,

– define differentially private class-centers in latent subspace of source
domain.

• The class-labels for unlabelled target data samples are estimated via
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– representing target data samples in source-data-space using a transfor-
mation that maps a target sample close to center of c−th labelled target
data samples to a point in source-data-space that is close to center of
c−th labelled source data samples,

– combining source and target domain classifiers for predicting class-
labels.

• The target domain classifier is learned adaptively in a manner that higher-
level data features are used during initial iterations for updating the classifier
parameters and as the number of iterations increases more and more lower-
level data features are intended to be included in the process of updating the
classifier parameters.
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3. Verification of Differential
Privacy Deep Learning Models
(T3.4)

The important part of the work package is to verify the developed framework for
differentially private distributed deep learning. Theoretical guarantees have already
been provided in D3.1 and in Chapter 1: generated noise distribution satisfies the
sufficient conditions for (ε, δ)−differential privacy. However the theoretical guar-
antees cannot prevent bugs and vulnerabilities in the developed software. Within
this task we need to ensure the correctness of the implementation and its integration
in the Serums Smart Health Center system.

3.1 Proposed Methodology

In this task we propose two approaches for checking correctness of the developed
software. The first part will check the differential privacy preservation by the soft-
ware component while in the second part will validate the lack of vulnerabilities
during the interactions between the privacy-preserving machine learning compo-
nent and the rest of the Serums Smart Health Center system.

Checking Differential Privacy Preservation

For the component implementation we are going to use a black-box testing check-
ing the satisfaction of (ε, δ)−differential privacy based on the ideas from adver-
sarial machine learning [40]. One of the commonly used approaches is based on
checking the presence of adversarial perturbations that are (minimal) changes to
the input data causing misclassifications. The definition of differential privacy al-
lows an adaptation of these techniques: search for the adversarial perturbation that
would break (ε, δ)−differential privacy guarantees. There exists many works on
automated search of perturbations, e.g. [41–46]. We would employ the approach
based on a list of transformations (e.g. [45,46]) that could be applied to the original
input.

One key component to this part is the available of suitable data. Since using
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real medical data is very complex and has many ethical and privacy concerns, in
the Serums project we use fabricated data (for details see Work Package 4 and
Deliverables D) instead since this allows for large amounts of data to be generated
that can be used for testing and experiments. Here this fabricated data will be
used in the experiments, and also the use of fabricated data allows us to perform
many different experiments with small (or differential) peturbations of the inputs
to test the outputs upon directly. This allows for results to be validated as behaving
in a correct and expected manner, as well as the above aspects using adversarial
machine learning.

Overall, the methodology here will include both targetted attempts using ad-
versarial machine learning to find edge cases, as well as broader black-box testing
of the implementation to ensure correct and expected behavior.

Vulnerability and Integration Analysis

The necessity of verification of machine learning on the global system level is ar-
gued in [47]. For the verification of the integration we are building a model in a
formal language incorporating all components and their interactions. The model is
being built in Uppaal tool1 that provides a modelling language and a model checker
and which have been used in multiple projects, e.g. [48, 49]. Formal model of the
complete system would allow us to check that the behaviour meets the specifica-
tion. The model will also be used in verification activities of other work packages
(WP5, WP6). Within this task we will focus on interactions with the privacy pre-
serving distributed deep learning component. In particular, we will validate that all
communications with the component are following the specifications, absence of
unspecified interactions and the contents of the data flow inside and outside of the
components. Attack models would be used to explore how to violate the correct
behavior of the system and to find potential vulnerabilities such as in [50]. An
example of property to be verified is impossibility to impersonate the distributed
deep learning component in order to receive private data.

1http://www.uppaal.org/
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