
The Schreier-Sims algorithm for finite permutation
groups

Derek Holt

University of Warwick

First CoDiMa Training School in Computational Discrete
Mathematics,

Manchester, 16-20 November 2015

Derek Holt (University of Warwick) The Schreier-Sims Algorithm November 2015 1 / 22

Contents

1 Permutation groups

2 Orbits and stabilizers

3 Computing orbits

4 Computing stabilizers

5 Bases and strong generating sets

6 Testing membership in a group with a BSGS

7 The Schreier-Sims Algorithm

8 Complexity

9 Improvements and further computations

10 Applications

Derek Holt (University of Warwick) The Schreier-Sims Algorithm November 2015 2 / 22

Permutation groups

Definition

A permutation group is a subgroup of the group Sym(Ω) of all
permutations of a set Ω.

In this talk, Ω will be finite, and can be assumed equal to {1, 2, . . . , n}.
We write Sn for Sym(Ω).

For α ∈ Ω and g ∈ Sym(Ω), the image of α under G will be written as αg

(and not g(α)).

So, for g , h ∈ Sym(Ω), gh means first g , then h.

Example

n = 6, g = (1, 3)(2, 5), h = (1, 3, 5)(2, 6) ⇒
gh = (1, 5, 6, 2), hg = (2, 6, 5, 3).

Derek Holt (University of Warwick) The Schreier-Sims Algorithm November 2015 3 / 22

Orbits and stabilizers

Let G be a permutation group on Ω.

For α ∈ Ω we define the orbit and stabilizer of α under G by

OrbG (α) = αG = {αg : g ∈ G}
StabG (α) = Gα = {g ∈ G : αg = α}.

The distinct orbits partition Ω.

If β ∈ αG , then there exists g ∈ G with αg = β. Then, for h ∈ G ,

αh = β ⇔ αh = αg ⇔ hg−1 ∈ Gα ⇔ h ∈ Gαg

So α has the same image under g and h if and only if g and h are in the
same right coset of Gα in G .

Derek Holt (University of Warwick) The Schreier-Sims Algorithm November 2015 4 / 22

The Orbit-Stabilizer Theorem

Hence there is a bijection between αG and the right cosets of Gα in G and:

Theorem (The Orbit-Stabilizer Theorem)

If G acts on Ω and α ∈ Ω, then |αG | = |G |/|Gα|.

For a group G ≤ Sym(Ω) generated by a finite set X of permutations, the
following simple procedure computes the orbit αG and, for each γ ∈ αG , it
computes an element uγ ∈ G with αuγ = γ.

These are returned as a sequence OT of pairs (γ, uγ).

Derek Holt (University of Warwick) The Schreier-Sims Algorithm November 2015 5 / 22

OrbitTransversal

Algorithm

OrbitTransversal(α,X)

Input: α ∈ Ω, X = [x1, . . . , xr], xi ∈ Sym(Ω) with 〈X 〉 = G
Output: {(γ, uγ) : γ ∈ αG , αuγ = γ}

1 OT := [(α, 1G)];
2 for (γ, uγ) ∈ OT, x ∈ X do if γx 6∈ OT
3 then Append(∼OT, (γx , uγx));
4 return OT;

Note that, by the above arguments,

G = ∪γ∈αG Gαuγ .

In other words, the set {uγ : γ ∈ αG} is a right transversal of Gα in G .

Derek Holt (University of Warwick) The Schreier-Sims Algorithm November 2015 6 / 22

Computing stabilizers

To compute (generators for) the stabilizer Gα of α, we use the following
result of Schreier.

Theorem

Let G = 〈X 〉 be a group generated by a set X , let H be a subgroup of G,
and let U be a right transversal of H in G. For any g ∈ G, we write g for
the unique element u ∈ U with g ∈ Hu. Then H is generated by the set
Y , with

Y = {uxux−1 : u ∈ U, x ∈ X}.

Derek Holt (University of Warwick) The Schreier-Sims Algorithm November 2015 7 / 22

Proof of Schreier’s Theorem

Lemma

Y−1 = S, where S =
{
ux−1ux−1

−1
: u ∈ U, x ∈ X

}
.

Proof

Let g ∈ Y−1, so g =
(
uxux−1

)−1
= uxx−1u−1.

Let v = ux ∈ U.

Then vx−1 = u, so g = vx−1vx−1
−1 ∈ S .

Hence Y−1 ⊆ S .

Conversely, let g = ux−1ux−1
−1 ∈ S , so g−1 = ux−1xu−1.

Let v = ux−1.

Then vx = u, so g−1 = vxvx−1 ∈ Y , so g ∈ Y−1.

Hence S ⊆ Y−1, so Y−1 = S .

Derek Holt (University of Warwick) The Schreier-Sims Algorithm November 2015 8 / 22

Proof of Schreier’s Theorem (ctd)

Proof of Theorem

Let h ∈ H. So h = a1 · · · ak , with each ai ∈ A = X ∪ X−1.

Define u0 := 1, and for 1 ≤ i ≤ k , ui := a1 · · · ai .
Since h ∈ H, we have uk = h = 1. Then

h =
(
u0a1u

−1
1

) (
u1a2u

−1
2

)
· · ·
(
ui−1aiu

−1
i

)
· · ·
(
uk−1aku

−1
k

)
.

Note that ui+1 = a1 · · · ai+1 is in the same coset of H as uiai+1, so
uiai+1 = ui+1, and

h =
(
u0a1u0a1

−1) · · · (ui−1aiui−1ai−1) · · · (uk−1akuk−1ak−1) .
Each bracketed term is in Y if ai ∈ X , and in Y−1 if ai ∈ X−1 by the
lemma, so H = 〈Y 〉.

Derek Holt (University of Warwick) The Schreier-Sims Algorithm November 2015 9 / 22

OrbitTransversalStabilizer

Using this theorem, the following procedure computes the list OT, and at
the same time computes a set Y of generators for Gα.

Algorithm

OrbitTransversalStabilizer(α,X)

Input: α ∈ Ω, X = [x1, . . . , xr], xi ∈ Sym(Ω) with 〈X 〉 = G
Output: OT, Y , as described above

1 OT := [(α, 1G)];
2 Y := {};
3 for (γ, uγ) ∈ OT, x ∈ X do if γx 6∈ OT
4 then Append(∼OT, (γx , uγx));
5 else Include(∼Y , uγx(uγx)−1);
6 return OT, Y ;

Derek Holt (University of Warwick) The Schreier-Sims Algorithm November 2015 10 / 22

OrbitTransversalStabilizer example

Example

G = 〈a, b〉 ≤ S4 with a = (1, 2, 3), b = (1, 4), α = 1.

γ uγ x γx uγx y = uγu
−1
γx

1 1 a 2 a
1 1 b 4 b
2 a a 3 a2

2 a b 2 aba−1 = (3, 4)
3 a2 a 1 a3 = 1
3 a2 b 3 a2ba−2 = (2, 4)
4 b a 4 bab−1 = (2, 3, 4)
4 b b 1 b2 = 1

So Gα = 〈(3, 4), (2, 4), (2, 3, 4)〉.

But note that the third generator of Gα is redundant.

Derek Holt (University of Warwick) The Schreier-Sims Algorithm November 2015 11 / 22

Bases and strong generating sets: definitions

From on, let G ≤ Sym(Ω) with Ω = {1 . . n}, where G is generated by a
finite sequence S of elements of Sym(n).

Let B = [β1, . . . , βk] be a sequence of distinct elements of Ω.

For 1 ≤ i ≤ k + 1 define

G (i) = Gβ1,...,βi−1
(so G (1) = G)

S (i) = S ∩ G (i)

H(i) = 〈S (i)〉 (⇒ H(i) ≤ G (i))

∆(i) = βH
(i)

i

U(i) = {u(i)γ | γ ∈ ∆(i)}

For given B and S , it is straightforward to compute S (i), and then ∆(i)

and U(i) can be computed by calling OrbitTransversal(βi ,S
(i)).

Derek Holt (University of Warwick) The Schreier-Sims Algorithm November 2015 12 / 22

Bases and strong generating sets: definitions (ctd)

Definition

The sequence B is said to be a base for G if the only element in G that
fixes each of β1, . . . , βk is the identity. That is, if G (k+1) = 1, and hence

1 = G (k+1) ≤ G (k) ≤ · · · ≤ G (2) ≤ G (1) = G .

The sequence S is said to be a strong generating set for G relative to
the base B if it includes generators for each stabilizer G (i) in the chain
above; that is, for i = 1, 2, . . . , k+1, G (i) = 〈S (i)〉 = H(i).

Note that this is true by definition for i = 1.

If B is a base and S is a strong generating set relative to B, then G (i) is
called the i-th basic stabilizer, ∆(i) = βG

(i)

i the i-th basic orbit.

Derek Holt (University of Warwick) The Schreier-Sims Algorithm November 2015 13 / 22

The normal form from a BSGS

If (B,S) is a BSGS, then the sequence of transversals U(1), · · · ,U(k)

provides us with a convenient normal form for the elements of G , since
every element g ∈ G has a unique representation

g = u(k)γk
· · · u(2)γ2 u

(1)
γ1

with γi ∈ ∆(i).

Then the order of the group can be read off from the transversals:

|G | = |U(k)| · |U(k−1)| · · · |U(1)|.

For a given BSGS (B, S), the next function Strip tests whether a given

g ∈ Sn lies in G and, if so, calculates its normal form [u
(i)
γi].

Derek Holt (University of Warwick) The Schreier-Sims Algorithm November 2015 14 / 22

Algorithm

Strip(g ,B, S , [∆(i)])

Input: g ∈ Sym(Ω), and BSGS B, S , [∆(i)] as described above

Output: Normal form U = [u
(i)
γi] and h ∈ Sym(Ω)

where g ∈ G ⇔ h = 1.
1 h := g ; U := [];
2 for i ∈ [1 . . k]
3 do (∗ h fixes base points β1, . . . , βi−1 ∗)
4 γi := βhi ;

5 if γi 6∈ ∆(i) then break;

6 x := u
(i)
γi ;

7 Append(∼U, x);
8 h := hx−1;
9 return U, h;

Derek Holt (University of Warwick) The Schreier-Sims Algorithm November 2015 15 / 22

The Schreier-Sims Algorithm

To simplify the description, we present a recursive version of the
Schreier-Sims Algorithm, which tests whether (B, S) is a BSGS for G .

Algorithm

SchreierSims(B,S , [∆(i)])

Input: Possible BSGS (B,S) with basic orbits [∆(i)]
Output true if (B,S) is a BSGS for G , false if not.

1 if not SchreierSims(B \ {β1}, S ∩ Gβ1 , [∆
(i) : i > 1])

2 then return false;
3 ∆,Y := OrbitStabilizer(β1, S);
4 for y ∈ Y

5 do U, h := Strip(y ,B \ {β1}, S ∩ Gβ1 , [∆
(i) : i > 1]);

6 if h 6= 1 then return false;
7 return true;

Derek Holt (University of Warwick) The Schreier-Sims Algorithm November 2015 16 / 22

The Schreier-Sims Algorithm (ctd)

A practical implementation would differ from the above in several ways.

(i) We would calculate the basic orbits during the algorithm rather than
in advance.

(ii) We would generate the elements y output by OrbitStabilizer one
at a time and apply Strip to each one in turn.

(iii) On failure, we would adjoin the ‘failing’ element h to S , and possibly
a new point to B, and then resume the computation, avoiding
recalculating orbits that have not changed.

To avoid repeated failures, it is helpful to construct a probable BSGS
before applying SchreierSims. This can be done by applying Strip to
random elements of G , and stopping when we have chosen some number
(say 20) of random elements without changing B and S .

If (B,S) is not a BSGS then the probability of detecting this by stripping a single

random group element is at least 1/2.

Derek Holt (University of Warwick) The Schreier-Sims Algorithm November 2015 17 / 22

SchreierSims example

Example (n = 5)

S = S (1) = [(1, 2, 3), (3, 4, 5)],

B = [1, 3],

S (2) = [(3, 4, 5)],

∆(1) = [1, 2, 3, 4, 5],

∆(2) = [3, 4, 5].

OrbitStabilizer with

γ = 2, x = (3, 4, 5), γx = 2, uγ = uγx = (1, 2, 3),

gives y := uγx(uγx)−1 = (2, 4, 5) ∈ Y . Then

Strip(y , [3], [(3, 4, 5)], [∆(2)]) fails, and so does

SchreierSims(B,S , [∆(i)]).

Derek Holt (University of Warwick) The Schreier-Sims Algorithm November 2015 18 / 22

SchreierSims example (ctd)

Example (ctd)

We append y to S , and 2 to B, giving

S = S (1) = [(1, 2, 3), (3, 4, 5), (2, 4, 5)],

B = [1, 3, 2],

S (2) = [(3, 4, 5), (2, 4, 5)],

S (3) = [(2, 4, 5)],

∆(1) = [1, 2, 3, 4, 5],

∆(2) = [3, 4, 5, 2],

∆(3) = [2, 4, 5].

SchreierSims(B,S , [∆(i)]) now succeeds.

Derek Holt (University of Warwick) The Schreier-Sims Algorithm November 2015 19 / 22

Complexity

A straightforward implementation of SchreierSims runs in polynomial
time, but Θ(n5) is the worst case. It is very effective for small to moderate
n (say n ≤ 103 or 104, depending on |B|).

There are very fast randomised versions in which we use
OrbitStabilizer to generate random elements of the set Y of Schreier
generators, and test those using Strip, and stop after a certain number
(say 20) have passed the test consecutively. Of course this could return a
wrong answer, with inconsistent data.

If we know the order of the group G already, then we can use the random
method very effectively by stopping when

∏k
i=1 |∆(i)| = |G |.

If we know already that B is a base (for example when G is given as a
subgroup of a group known to have base B) then to test that h = 1, we
only need check that h fixes the points in B. This produces a significant
speed-up if k = |B| is small compared with n.

Derek Holt (University of Warwick) The Schreier-Sims Algorithm November 2015 20 / 22

Improvements and further computations

There are many possible improvements, some of which incorporate the
randomised algorithm but with more elaborate methods to check
correctness. One such method uses another fundamental algorithm in
Computational Group Theory, namely coset enumeration.

The BSGS data structure is used in almost all further algorithms for
structural computations in finite permutation groups.

The normal form [u
(i)
γi] provides a convenient representation for backtrack

searches through the group elements.

These are used in computing Sylow subgroups, centralizers and
normalizers, for example.

Derek Holt (University of Warwick) The Schreier-Sims Algorithm November 2015 21 / 22

Applications

More specialised versions of SchreierSims were used by Sims to
construct and prove the existence of some of the sporadic finite simple
groups, including

(i) the Lyons group in 1973 (n ≈ 9× 106);

(ii) the O’Nan group in 1976 (n = 122760); and

(iii) the Baby Monster (n ≈ 1.4× 1010) in 1980.

An implementation of SchreierSims was used in the early 1980s by
Diaconis, Graham, Kantor, and Knuth to help determine the group
char(2n) generated by the two types of perfect riffle shuffles in decks with
an even number 2n of cards.

For example, char(12) ∼= C 11
2 oM12.

It has also been used to construct certain Cayley graphs, which can be
used in the design of processor interconnection networks.

Derek Holt (University of Warwick) The Schreier-Sims Algorithm November 2015 22 / 22

	Permutation groups
	Orbits and stabilizers
	Computing orbits
	Computing stabilizers
	Bases and strong generating sets
	Testing membership in a group with a BSGS
	The Schreier-Sims Algorithm
	Complexity
	Improvements and further computations
	Applications

