Using GAP Effectively
Some Tips and Pittalls

Steve Linton
CoDiMa School 2016

Philosophny

 GAP has two somewhat contradictory design goals

e to allow users to pose questions in a way that seems natural to a working
mathematician and get answers

e to allow the expert computational mathematician to implement and apply the most
advanced techniqgues to solve hard problems

 The first is achieved to a limited extent.

gap> # to find an element of S_9 which is NOT an involution
gap>Filtered(Elements(SymmetricGroup(9)), x-> x*x <> ())[1];
(7,9,8)

gap> time;

1197

* Replace 9 by say 15 and you quickly run out of memory.
« 150 is roughly 1.3 x 10",

e This talk is about how to start thinking like an expert.

f you don't need it don't store it!

gap> n = 9;; Filtered(Elements(SymmetricGroup(n)), x-> x*x <> ())[1];

e This computes and stores the full list of elements of S,

e Then it checks each of them to see if it has order dividing 2 and stores a second
list of all of those which don't

e Finally it returns the first one.

« We can stop looking when we find one. GAP even provides a built in function to do
this:

gap> n = 9;; First(Elements(SymmetricGroup(n)), X-> X*x <> ());

e Stopping things as soon as possible is an important principle. In this
case though the real problem is computing and storing all the
elements

e |Let's explore some alternatives

Enumerators

 Enumerator returns a list of elements of a domain which may be virtual
* also EnumeratorSorted — but only if you need it

* For many objects it is quick to construct, but may be slower to access

gap> e := Enumerator(SymmetricGroup(99));

<enumerator of perm group>

gap> Length(e);
933262154439441526816992388562667004907159682643816214685929638952175999932299\
156089414639761565182862536979208272237582511852109168640000000000000000000000
gap> e[10A100];
(2,00,99,55,54,065,7,16,18,32,70,15,5,37,43,97,19,31,66,30,90,17,29,85,28,67,
27,062,206,34,52,59)(3,44,73,47,95,45,51,68,50,86,49,83,40,36,81,35,93,12,76,11,
75,10,46,9,96,8,53,42,41,22,78,21,38,20,24,63,23,48,39,56,4,6,58,14,80,13,25,
33)

* See also EnumeratorOfCartesianProduct,
EnumeratorOfTuples and EnumeratorOtf Combinations.

lterators

* Even an Enumerator can be too heavyweight
e sometimes you don't need to even number the elements, or know how many there are
e For this GAP has lterators

* [sDonelterator and Nextlterator operations

gap> n := 9;; 1 := Iterator(SymmetricGroup(n));;
gap> while not IsDonelterator(i) do x := NextIterator(i); if x*x = () then break; fi; od;
gap> X;

O

* or more concisely, thanks to some built-in magic:

gap> n := 9;; for x in SymmetricGroup(n) do 1f x *x = () then break; f1i; od;
gap> X;

O

* Or even

gap> n := 9;; First(SymmetricGroup(n), x->x*x = ());
@,

Randomness

e Sometimes you can’'t even make an iterator for your group easily, but
you know the elements you want exist and are not too rare

e SO make pseudo-random elements of the group until you find one

gap> g := SL(10,3);

SL({10,3)

gap> repeat x := PseudoRandom(g); until Order(x) = (3A10-1)/2;
gap> Display(x);

2 .2 .1..211
.1 .1211212
.1111.. .11
.. 1121121
.22 .221 . ..
2 .1 .222212
2211 .2222°2
211.2.1. 2.
211.22111.
21122221

But Is searching through all the elements
the right thing to do In the first place?

 Element order is a conjugacy invariant

« For many groups there are ways of finding conjugacy class
representatives that are faster than listing all elements

e or they might be already known and stored
gap> n := 9;; Representative(First(ConjugacyClasses(SymmetricGroup(n)),
c->Representative(c)AZ2 <> (O)));
(1,2,3)
e This Is one of the most powerful technigues, especially
for non-abelian simple groups and things close to them

* Of course if you are really working in S_n you can simply
construct the answer as a permutation

Narrowing the Search

gap> First(SymmetricGroup(12), x-> OnTuples([1,2,3,4,5],x) = [1,3,5,7,9] and
Order(x) = 7); time;

(2,3,5,9,4,7,12)

11377

e For larger values of 12, this get slow.
* because it searches lots of elements that fix 2 before it looks at anything that moves 1 to 2

e Use a bit of maths

e the elements that map [1,2,3,4,5] to [1,3,5,7,9] lie is a coset of a sequence stabilizer

gap> g := SymmetricGroup(1l2);; s :=
gap> r := RepresentativeAction(g, [1
2,3,5,9,8,0)(4,7)

gap> First(s,x->0rder(x*r) = 7)*r;
(2’3’5’9,4’7)6)

Stabilizer(qg,[1,2,3,4,5],0nTuples);;
2 3,4,5],[1,3,5,7,9],OnTup1es),

General Principles

 Don’t write down the list of elements first

e Stop when you've found it

Stop looking at other elements as soon as you know they're not it
e order of a matrix can be large and a bit slow to compute

e if all you care about is whether it is 2, just check “IsOne(x*x) and not
IsOne(x)”

Try and identify a subgroup, or coset or conjugacy class that it lies in
e remember Sylow subgroups!

e automorphism group sometimes helps too

Search only in there

Searching For a Subgroup

 Even worse — quite small groups can have very many subgroups
« Some kinds that are eas(ier) to find

e Cyclic subgroups (via ConjugacyClasses).

NormalSubgroups.

Derived, Lower Central etc. series.

Sylow subgroups.

Maximal subgroups (for some groups).

 MaximalSubgroups will return all subgroups. You are likely to want ony
MaximalSubgroupClassReps.

e Ask yourself if one of these lists might include the one you want, or at least help you on
your way

Searching for multiple elements

« Conjecture: Us(3) cannot be generated by three involutions
* |Us(3)| = 6048
e SO we know some things not to do:

 list all 216G triples of elements of U3(3) and filter out all the ones that
generate the group and consist of involutions

e use lteratorOfTuples to run through all 216G...
e use lteratorOfCombinations to run through 36G unordered triples
« the same, but test for involutions first

e would take a few hours on my laptops

 find the involutions first (there are just 63 of them) and run over triples

e takes 22 seconds

gap> g := PSU(3,3);

<permutation group of size 6048 with 2 generators>
gap> 1s := Filtered(g, x->Order(x) = 2);;

gap> Length(is);

63

gap> 1 := IteratorOfCombinations(is,3);; ct := 0;

0

gap> 1 := IteratorOfCombinations(is,3); while not IsDoneIlterator(i) do

> X := NextIterator(i); if Subgroup(g,x) = g then break; fi; ct := ct+l; od;
<iterator>
#G FULL 736236/ 84320kb live
time;
ct;
Binogap> time;
21859
gap> ct;
39711
gap> Binomial(63,3);
39711

78877K/ 4583mb dead 13995/ 1180mb free

Searching for multiple elements

We still haven’t used conjugacy

We could choose our first involution to be a conjugacy class rep
« there is only one conjugacy class of involutions
e reduce search from Binomial(63,3) to Binomial(62,2)

But now the second involution can be chosen up to conjugacy in the
centraliser of the first one

e just four cases to consider
e searchis now 4*61 cases

Of course the third one can be chosen up to conjugacy in the normaliser of the
subgroup generated by the first two.....

If the things you are searching for are not all the same, then the order in which
you look at them also matters

Morpheus

* This type of search for sequences of elements that generate
something is nicely implemented by Alexander Hulpke in a part
of the GAP library called Morpheus

* There are various functions that access morpheus documented
in the library under “Searching for Homomorphisms”

* Our example is asking whether U3(3) is a quotient of the free
product of three cyclic groups of order 2

gap> g:=PSU(3,3);;

gap> F:=FreeGroup(3);;

gap> F:=F/[F.1A2,F.2A2,F.3/2];;
gap> GQuotients(F,g);

[]

gap> time;

2006

Morpheus Ctd

gap> F:=F/[F.1A2,F.2/6];;
gap> GQuotients(F,g);
L [f1, f2] -> [(3,4)(5,8)(6,9)(7,10)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34). . . ,
[f1, f2] -> [(1,11)(3,20)(4,29)(5,83)(6,74)(7,65)(8,56)(9,47)(10,38)(14,19) . . . 1]

e S0 U3z(3) is (2,6) generated in two distinct ways.

 Presented as homomorphisms — easy to recover
the generators if you want them

 Other Morpheus functions: AllHomomorphisms,
AutomorphismGroup, IsomorphicSubgroups

» A powertul tool for many purposes

Anecdote: Extreme Searching

e Looking for 2,3,7 triples in a a permutation group G so big that main memory could
only hold two permutations

e expecting to have to check millions of cases
 on a 16MHz CPU shared with the entire university
e this was a while ago

e Know (from character table) all the conjugacy classes of elements order 2 and 3 —
and have representatives

e Fix T order 2 and S order 3 which generate G
e run through all words W in ST and SST up to some length
e trace points one by one through (TW 'sw)’
e as soon as one does not get to the start you can discard that W.

e Searches tens of thousands of cases for the cost of one permutation multiply

Working in the right Group

Mathematicians are very sloppy
e they constantly identify isomorphic groups

* S0 As “is” PSL(2,5) and SL(2,4) and <a,b | a2 = b? =
(ab)° = 1> and <(1,3,6,2,4), (1,2,3)(4,5,6)>

but computationally these are different
choose the right one to work In
Two tools for moving between them:

e homomorphisms and straight-line programs

Finitely Presented Groups

* [ots of functionality in GAP tfor fp groups — mostly
to do with identifying unknown ones

* |ots of textbooks that define groups by
presentations: Don = <a,b | an = (ab)2 = b2 = 1>

 GAP supports some general group theoretic
computation with fp groups that turn out to be finite

* But it's usually the wrong way to do things

Finitely Presented Groups

gap> f := FreeGroup("a","b");

<free group on the generators [a, b]>

gap> AssignGeneratorVariables(f);

#1 Global variable "a' is already defined and will be overwritten

#I Global variable "'b' 1s already defined and will be overwritten

#I Assigned the global variables [a, b]

gap> g .= f/[ar2,bA3,(a*b)A7, Comm(a,b)A8];

<fp group on the generators [a, b]>

gap> Sum(Elements(g), Order); ;time;

#G FULL 080861/ 7748o6kb 1ive 85919K/ 4610mb dead 12986/ 1172mb free
#G FULL 703271/ 76510kb 1ive 36873K/ 2643mb dead 13204/ 1171mb free
14236

gap> x := Random(g);
b*ar-1*bA-1*(ar-1*bA-1*aAr-1*b)A3*(ar-1*bA-1)A3*a*bA-1*a*b*(a*b*a*bA-1)A2*a*bA-1

Using Homomorphisms

gap> g := f/[ar2,bA3,(a*b)A7, Comm(a,b)A8];

<fp group on the generators [a, b]>

gap> phi := IsomorphismPermGroup(g);

#G FULL 678461/ 75814kb live 50448K/ 3000mb dead 12758/ 1170mb free

La, b]l > [(1,2)(3,5)(4,6)(7,11)(8,12)(9,13)(10,14)(16,20)(17,21)(18,22)(19,23)(25,
29)(26,27)(28,30)(31,34)(32,35)(33,36)(37,41)(38,42)(39,43)(40,44)(45,50)(46,51) (48,
52)(49,53)(54,56), (2,3,4)(5,7,8)(6,9,10)(11,15,14)(12,16,17)(13,18,19)(20,24,
23)(21,25,26)(22,27,28)(29,31,32)(30,33,34)(35,37,38)(36,39,40)(41,45,46)(42,47,
43)(44,48,49)(50,53,54)(51,55,52)]

gap> h := ImagesSource(phi);

<permutation group of size 10752 with 2 generators>

gap> Sum(ElementsCh), Order);; time;

22

gap> x := Random(Ch);

(1,14,56,52)(2,21,20,41,54,32,42,8)(3,55,23,11)(4,49,47,30,53,6,24,28)(5,13,31,39,45,40,

206,19)(7,34,29,44)(9,46,27,25)(10,12,33,35,48,37,22,17)(15,43,51,50)(16,36,38,18)

gap> PrelmagesRepresentative(phi,x);

(bA-1*aA-1*b*ar-1)A3*bA-1*aA-1*bA2*¥(a*b*a*bA-1)A3*(a*b)A2*ar-1*b*(ar-1* bA-1)A2*an-1

Other Isomorphism
Constructors

Isomorphism|[Special|PcGroup

e pcgroups are usually the fastest representation for solvable groups
IsomorphismFpGroup

e basically only if you want a presentation of your group
SmallerDegreePermRep

 heuristic
GAP will sometimes do this for you

e see ?NiceMonomorphism or ?NiceObiject

e put it can be better to do it by hand

A Few Homomorphism
Operations

Part of general mapping (relation) machinery
Source and Range (domain and codomain)
e given when the morphism is constructed
* morphism does not need to be total or onto, so they may be bigger than you expect
* ImagesSource and PrelmagesRange may be what you want
Image specialised to ImageEIm and ImagesSet
* which don't check that the input is in the source
PrelmagesRepresentative gives just ONE preimage
InverseGeneralMapping

CompositionMapping

gap> g:=Group((1,2,3,4),(1,2),(5,6,7));;
gap> iso:=lsomorphismPcGroup(g);;
gap> h:=Image(iso);;

gap> z:=Centre(h);;

gap> SetCentre(g,Prelmage(iso,z));
gap> cl:=ConjugacyClasses(h);;

gap> ncl:=[];;

gap> for c in cl do

> nc:=ConjugacyClass(g,

> Prelmage(iso,Representative(c)));;

> SetSize(nc,Size(c));

> SetStabilizerOfExternalSet(nc,

> Prelmage(iso,StabilizerOfExternalSet(c)));
> Add(ncl,nc);

> 0d;

gap> List(ncl,Size);
[1,1,6,8,3,1,6,8,3,6,6,8,3,6, 6]
gap> SetConjugacyClasses(g,ncl);

Homorphisms in General

* Even if you can’t find an isomorphism to a nicer group, you may be able to find a
homomorphism

* solve your problem in the image first and refine

gap> g .= GFOUpcclaz),(3,4),(5,6),(7,8),(9,16,11),(11,12,13));
Group(C[(1,2), (3,4, (5,6), (7,8, (9,10,11), (11,12,13) 1)
gap> Number(g, x-> Order(x) mod 2 = 1); Size(g);

45

960

gap> Orbits(g,MovedPoints(g));

(L, 21,03 41,[5 %661, [7,8]1, [9, 10, 11, 12, 13]]
gap> phi := ActionHomomorphism(g,[1..8]);

<action homomorphism>

gap> h := ImagesSource(phi);

Group([(1,2), (3,4), (5,6), (7,8) 1D

gap> odds := Filtered(h, x->0Order(x) mod 2 = 1);;

gap> p := PrelmagesSet(phi,odds);;

gap> odds := Filtered(h, x->0Order(x) mod 2 = 1);; Length(Codds);
1

gap> p := PrelmagesSet(phi,odds);;

gap> Length(p); Number(p, x->Order(x) mod 2 = 1);

60

45

Not all homomorphisms are equal

* |f you just make a GroupHomorphismBylmages (by giving
images of generators)

* it can be slow to make because it checks (use
GroupHomorphismBylmagesNC if you are sure you are right)

* Image and preimage computation can be slow, or preimages
can be “nasty” (long words in FP group)

* essential because factorisation in terms of generators is
not always easy

* ActionHomorphisms are usually good

e S0 are most things produced by IsomorphismXXXGroup

Random [ips 1

- Avoid long lists of mutable objects

e since the objects in the list might change “under its feet” the list can't
remember

« whether it's sorted
e whether the entries are all from the same family

e SO whenever you try and search it or call an operation on it, it has to look at
every element

e can become very slow
 lists of immutable objects are much better

e sorted lists of immutable comparable objects can use binary search

Random [ips 2

There are space and time efficient representations of vectors and matrices over
finite fields

e Up to order 256 in the kernel
e bigger fields in package cvec
Vectors and matrices are not always in these representations by default

e among other reasons because deciding whether this vector is “really” over
GF(3) or GF(9) requires prescience

ConvertToVectorRep(v, g) and ConvertToMatrixRep(m,q) convert in place
cvec has its own functions

working with large uncompressed vectors or matrices is a bad idea.

Further Reading

* A lot of this talk was taken from Alexander Hulpke’s
talk “Using GAP”, especially section 4

* You can read the original without my mistakes at

hitp://www.math.colostate.edu/~hulpke/paper/
gap4tut.pdf

* A lot of similar ideas are found in my paper “The Art
and Science of Computing in Large Groups” (in
Bosma & van der Poorten: Computational Algebra
and Number Theory, 1995, Springer

http://www.math.colostate.edu/~hulpke/paper/gap4tut.pdf
http://www.math.colostate.edu/~hulpke/paper/gap4tut.pdf

