
Using GAP Effectively
Some Tips and Pitfalls

Steve Linton
CoDiMa School 2016

Philosophy
• GAP has two somewhat contradictory design goals

• to allow users to pose questions in a way that seems natural to a working
mathematician and get answers

• to allow the expert computational mathematician to implement and apply the most
advanced techniques to solve hard problems

• The first is achieved to a limited extent.

gap> # to find an element of S_9 which is NOT an involution
gap>Filtered(Elements(SymmetricGroup(9)), x-> x*x <> ())[1];
(7,9,8)
gap> time;
1197

• Replace 9 by say 15 and you quickly run out of memory.

• 15! is roughly 1.3 x 1012.

• This talk is about how to start thinking like an expert.

If you don’t need it don’t store it!

• This computes and stores the full list of elements of Sn

• Then it checks each of them to see if it has order dividing 2 and stores a second
list of all of those which don’t

• Finally it returns the first one.

• We can stop looking when we find one. GAP even provides a built in function to do
this:

gap> n = 9;; Filtered(Elements(SymmetricGroup(n)), x-> x*x <> ())[1];

gap> n = 9;; First(Elements(SymmetricGroup(n)), x-> x*x <> ());

• Stopping things as soon as possible is an important principle. In this
case though the real problem is computing and storing all the
elements

• Let’s explore some alternatives

Enumerators
• Enumerator returns a list of elements of a domain which may be virtual

• also EnumeratorSorted — but only if you need it

• For many objects it is quick to construct, but may be slower to access

gap> e := Enumerator(SymmetricGroup(99));
<enumerator of perm group>
gap> Length(e);
933262154439441526816992388562667004907159682643816214685929638952175999932299\
156089414639761565182862536979208272237582511852109168640000000000000000000000
gap> e[10^100];
(2,60,99,55,54,65,7,16,18,32,70,15,5,37,43,97,19,31,66,30,90,17,29,85,28,67,
27,62,26,34,52,59)(3,44,73,47,95,45,51,68,50,86,49,83,40,36,81,35,93,12,76,11,
75,10,46,9,96,8,53,42,41,22,78,21,38,20,24,63,23,48,39,56,4,6,58,14,80,13,25,
33)

• See also EnumeratorOfCartesianProduct,
EnumeratorOfTuples and EnumeratorOf Combinations.

Iterators
• Even an Enumerator can be too heavyweight

• sometimes you don’t need to even number the elements, or know how many there are

• For this GAP has Iterators

• IsDoneIterator and NextIterator operations

gap> n := 9;; i := Iterator(SymmetricGroup(n));;
gap> while not IsDoneIterator(i) do x := NextIterator(i); if x*x = () then break; fi; od;
gap> x;
()

• or more concisely, thanks to some built-in magic:

gap> n := 9;; for x in SymmetricGroup(n) do if x *x = () then break; fi; od;
gap> x;
()

• or even

gap> n := 9;; First(SymmetricGroup(n), x->x*x = ());
()

Randomness
• Sometimes you can’t even make an iterator for your group easily, but

you know the elements you want exist and are not too rare

• So make pseudo-random elements of the group until you find one

gap> g := SL(10,3);
SL(10,3)
gap> repeat x := PseudoRandom(g); until Order(x) = (3^10-1)/2;
gap> Display(x);
 2 . 2 . 1 . . 2 1 1
 . 1 . 1 2 1 1 2 1 2
 . 1 1 1 1 . . . 1 1
 . . . 1 1 2 1 1 2 1
 . 2 2 . 2 2 1 . . .
 2 . 1 . 2 2 2 2 1 2
 2 2 1 1 . 2 2 2 2 2
 2 1 1 . 2 . 1 . 2 .
 2 1 1 . 2 2 1 1 1 .
 . . 2 1 1 2 2 2 2 1

But is searching through all the elements
the right thing to do in the first place?

• Element order is a conjugacy invariant

• For many groups there are ways of finding conjugacy class
representatives that are faster than listing all elements

• or they might be already known and stored
gap> n := 9;; Representative(First(ConjugacyClasses(SymmetricGroup(n)),
c->Representative(c)^2 <> ()));
(1,2,3)

• This is one of the most powerful techniques, especially
for non-abelian simple groups and things close to them

• Of course if you are really working in S_n you can simply
construct the answer as a permutation

Narrowing the Search

• For larger values of 12, this get slow.

• because it searches lots of elements that fix 2 before it looks at anything that moves 1 to 2

• Use a bit of maths

• the elements that map [1,2,3,4,5] to [1,3,5,7,9] lie is a coset of a sequence stabilizer

gap> First(SymmetricGroup(12), x-> OnTuples([1,2,3,4,5],x) = [1,3,5,7,9] and
Order(x) = 7); time;
(2,3,5,9,4,7,12)
11377

gap> g := SymmetricGroup(12);; s := Stabilizer(g,[1,2,3,4,5],OnTuples);;
gap> r := RepresentativeAction(g,[1,2,3,4,5],[1,3,5,7,9],OnTuples);
(2,3,5,9,8,6)(4,7)
gap> First(s,x->Order(x*r) = 7)*r;
(2,3,5,9,4,7,6)

General Principles
• Searching for an element in a group

• Don’t write down the list of elements first

• Stop when you’ve found it

• Stop looking at other elements as soon as you know they’re not it

• order of a matrix can be large and a bit slow to compute

• if all you care about is whether it is 2, just check “IsOne(x*x) and not
IsOne(x)”

• Try and identify a subgroup, or coset or conjugacy class that it lies in

• remember Sylow subgroups!

• automorphism group sometimes helps too

• Search only in there

Searching For a Subgroup
• Even worse — quite small groups can have very many subgroups

• Some kinds that are eas(ier) to find

• Cyclic subgroups (via ConjugacyClasses).

• NormalSubgroups.

• Derived, Lower Central etc. series.

• Sylow subgroups.

• Maximal subgroups (for some groups).

• MaximalSubgroups will return all subgroups. You are likely to want ony
MaximalSubgroupClassReps.

• Ask yourself if one of these lists might include the one you want, or at least help you on
your way

Searching for multiple elements
• Conjecture: U3(3) cannot be generated by three involutions

• |U3(3)| = 6048

• So we know some things not to do:

• list all 216G triples of elements of U3(3) and filter out all the ones that
generate the group and consist of involutions

• use IteratorOfTuples to run through all 216G…

• use IteratorOfCombinations to run through 36G unordered triples

• the same, but test for involutions first

• would take a few hours on my laptops

• find the involutions first (there are just 63 of them) and run over triples

• takes 22 seconds

gap> g := PSU(3,3);
<permutation group of size 6048 with 2 generators>
gap> is := Filtered(g, x->Order(x) = 2);;
gap> Length(is);
63
gap> i := IteratorOfCombinations(is,3);; ct := 0;
0
gap> i := IteratorOfCombinations(is,3); while not IsDoneIterator(i) do
> x := NextIterator(i); if Subgroup(g,x) = g then break; fi; ct := ct+1; od;
<iterator>
#G FULL 736236/ 84320kb live 78877K/ 4583mb dead 13995/ 1180mb free
time;
ct;
Binogap> time;
21859
gap> ct;
39711
gap> Binomial(63,3);
39711

Searching for multiple elements
• We still haven’t used conjugacy

• We could choose our first involution to be a conjugacy class rep

• there is only one conjugacy class of involutions

• reduce search from Binomial(63,3) to Binomial(62,2)

• But now the second involution can be chosen up to conjugacy in the
centraliser of the first one

• just four cases to consider

• search is now 4*61 cases

• Of course the third one can be chosen up to conjugacy in the normaliser of the
subgroup generated by the first two…..

• If the things you are searching for are not all the same, then the order in which
you look at them also matters

Morpheus
• This type of search for sequences of elements that generate

something is nicely implemented by Alexander Hulpke in a part
of the GAP library called Morpheus

• There are various functions that access morpheus documented
in the library under “Searching for Homomorphisms”

• Our example is asking whether U3(3) is a quotient of the free
product of three cyclic groups of order 2

gap> g:=PSU(3,3);;
gap> F:=FreeGroup(3);;
gap> F:=F/[F.1^2,F.2^2,F.3^2];;
gap> GQuotients(F,g);
[]
gap> time;
206

Morpheus Ctd

• So U3(3) is (2,6) generated in two distinct ways.

• Presented as homomorphisms — easy to recover
the generators if you want them

• Other Morpheus functions: AllHomomorphisms,
AutomorphismGroup, IsomorphicSubgroups

• A powerful tool for many purposes

gap> F:=FreeGroup(2);;
gap> F:=F/[F.1^2,F.2^6];;
gap> GQuotients(F,g);
[[f1, f2] -> [(3,4)(5,8)(6,9)(7,10)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34). . . ,
 [f1, f2] -> [(1,11)(3,20)(4,29)(5,83)(6,74)(7,65)(8,56)(9,47)(10,38)(14,19) . . .]]

Anecdote: Extreme Searching
• Looking for 2,3,7 triples in a a permutation group G so big that main memory could

only hold two permutations

• expecting to have to check millions of cases

• on a 16MHz CPU shared with the entire university

• this was a while ago

• Know (from character table) all the conjugacy classes of elements order 2 and 3 —
and have representatives

• Fix T order 2 and S order 3 which generate G

• run through all words W in ST and SST up to some length

• trace points one by one through (TW-1SW)7

• as soon as one does not get to the start you can discard that W.

• Searches tens of thousands of cases for the cost of one permutation multiply

Working in the right Group
• Mathematicians are very sloppy

• they constantly identify isomorphic groups

• So A5 “is” PSL(2,5) and SL(2,4) and <a,b | a2 = b3 =
(ab)5 = 1> and <(1,3,6,2,4), (1,2,3)(4,5,6)>

• but computationally these are different

• choose the right one to work in

• Two tools for moving between them:

• homomorphisms and straight-line programs

Finitely Presented Groups
• Lots of functionality in GAP for fp groups — mostly

to do with identifying unknown ones

• Lots of textbooks that define groups by
presentations: D2n = <a,b | an = (ab)2 = b2 = 1>

• GAP supports some general group theoretic
computation with fp groups that turn out to be finite

• But it’s usually the wrong way to do things

Finitely Presented Groups
gap> f := FreeGroup("a","b");
<free group on the generators [a, b]>
gap> AssignGeneratorVariables(f);
#I Global variable `a' is already defined and will be overwritten
#I Global variable `b' is already defined and will be overwritten
#I Assigned the global variables [a, b]
gap> g := f/[a^2,b^3,(a*b)^7, Comm(a,b)^8];
<fp group on the generators [a, b]>
gap> Sum(Elements(g), Order);;time;
#G FULL 680861/ 77486kb live 85919K/ 4610mb dead 12986/ 1172mb free
#G FULL 703271/ 76510kb live 36873K/ 2643mb dead 13204/ 1171mb free
14236
gap> x := Random(g);
b*a^-1*b^-1*(a^-1*b^-1*a^-1*b)^3*(a^-1*b^-1)^3*a*b^-1*a*b*(a*b*a*b^-1)^2*a*b^-1

Using Homomorphisms
.
gap> g := f/[a^2,b^3,(a*b)^7, Comm(a,b)^8];
<fp group on the generators [a, b]>
gap> phi := IsomorphismPermGroup(g);
#G FULL 678461/ 75814kb live 50448K/ 3000mb dead 12758/ 1170mb free
[a, b] -> [(1,2)(3,5)(4,6)(7,11)(8,12)(9,13)(10,14)(16,20)(17,21)(18,22)(19,23)(25,
 29)(26,27)(28,30)(31,34)(32,35)(33,36)(37,41)(38,42)(39,43)(40,44)(45,50)(46,51)(48,
 52)(49,53)(54,56), (2,3,4)(5,7,8)(6,9,10)(11,15,14)(12,16,17)(13,18,19)(20,24,
 23)(21,25,26)(22,27,28)(29,31,32)(30,33,34)(35,37,38)(36,39,40)(41,45,46)(42,47,
 43)(44,48,49)(50,53,54)(51,55,52)]
gap> h := ImagesSource(phi);
<permutation group of size 10752 with 2 generators>
gap> Sum(Elements(h), Order);; time;
22
gap> x := Random(h);
(1,14,56,52)(2,21,20,41,54,32,42,8)(3,55,23,11)(4,49,47,30,53,6,24,28)(5,13,31,39,45,40,
26,19)(7,34,29,44)(9,46,27,25)(10,12,33,35,48,37,22,17)(15,43,51,50)(16,36,38,18)
gap> PreImagesRepresentative(phi,x);
(b^-1*a^-1*b*a^-1)^3*b^-1*a^-1*b^2*(a*b*a*b^-1)^3*(a*b)^2*a^-1*b*(a^-1*b^-1)^2*a^-1

Other Isomorphism
Constructors

• Isomorphism[Special]PcGroup

• pcgroups are usually the fastest representation for solvable groups

• IsomorphismFpGroup

• basically only if you want a presentation of your group

• SmallerDegreePermRep

• heuristic

• GAP will sometimes do this for you

• see ?NiceMonomorphism or ?NiceObject

• but it can be better to do it by hand

A Few Homomorphism
Operations

• Part of general mapping (relation) machinery

• Source and Range (domain and codomain)

• given when the morphism is constructed

• morphism does not need to be total or onto, so they may be bigger than you expect

• ImagesSource and PreImagesRange may be what you want

• Image specialised to ImageElm and ImagesSet

• which don’t check that the input is in the source

• PreImagesRepresentative gives just ONE preimage

• InverseGeneralMapping

• CompositionMapping

gap> g:=Group((1,2,3,4),(1,2),(5,6,7));;
gap> iso:=IsomorphismPcGroup(g);;
gap> h:=Image(iso);;
gap> z:=Centre(h);;
gap> SetCentre(g,PreImage(iso,z));
gap> cl:=ConjugacyClasses(h);;
gap> ncl:=[];;
gap> for c in cl do
> nc:=ConjugacyClass(g,
> PreImage(iso,Representative(c)));;
> SetSize(nc,Size(c));
> SetStabilizerOfExternalSet(nc,
> PreImage(iso,StabilizerOfExternalSet(c)));
> Add(ncl,nc);
> od;
gap> List(ncl,Size);
[1, 1, 6, 8, 3, 1, 6, 8, 3, 6, 6, 8, 3, 6, 6]
gap> SetConjugacyClasses(g,ncl);

Homorphisms in General
• Even if you can’t find an isomorphism to a nicer group, you may be able to find a

homomorphism

• solve your problem in the image first and refine
gap> g := Group((1,2),(3,4),(5,6),(7,8),(9,10,11),(11,12,13));
Group([(1,2), (3,4), (5,6), (7,8), (9,10,11), (11,12,13)])
gap> Number(g, x-> Order(x) mod 2 = 1); Size(g);
45
960
gap> Orbits(g,MovedPoints(g));
[[1, 2], [3, 4], [5, 6], [7, 8], [9, 10, 11, 12, 13]]
gap> phi := ActionHomomorphism(g,[1..8]);
<action homomorphism>
gap> h := ImagesSource(phi);
Group([(1,2), (3,4), (5,6), (7,8)])
gap> odds := Filtered(h, x->Order(x) mod 2 = 1);;
gap> p := PreImagesSet(phi,odds);;
gap> odds := Filtered(h, x->Order(x) mod 2 = 1);; Length(odds);
1
gap> p := PreImagesSet(phi,odds);;
gap> Length(p); Number(p, x->Order(x) mod 2 = 1);
60
45

Not all homomorphisms are equal
• If you just make a GroupHomorphismByImages (by giving

images of generators)

• it can be slow to make because it checks (use
GroupHomorphismByImagesNC if you are sure you are right)

• Image and preimage computation can be slow, or preimages
can be “nasty” (long words in FP group)

• essential because factorisation in terms of generators is
not always easy

• ActionHomorphisms are usually good

• So are most things produced by IsomorphismXXXGroup

Random Tips 1
• Avoid long lists of mutable objects

• since the objects in the list might change “under its feet” the list can’t
remember

• whether it’s sorted

• whether the entries are all from the same family

• so whenever you try and search it or call an operation on it, it has to look at
every element

• can become very slow

• lists of immutable objects are much better

• sorted lists of immutable comparable objects can use binary search

Random Tips 2
• There are space and time efficient representations of vectors and matrices over

finite fields

• up to order 256 in the kernel

• bigger fields in package cvec

• Vectors and matrices are not always in these representations by default

• among other reasons because deciding whether this vector is “really” over
GF(3) or GF(9) requires prescience

• ConvertToVectorRep(v, q) and ConvertToMatrixRep(m,q) convert in place

• cvec has its own functions

• working with large uncompressed vectors or matrices is a bad idea.

Further Reading
• A lot of this talk was taken from Alexander Hulpke’s

talk “Using GAP”, especially section 4

• You can read the original without my mistakes at
http://www.math.colostate.edu/~hulpke/paper/
gap4tut.pdf

• A lot of similar ideas are found in my paper “The Art
and Science of Computing in Large Groups” (in
Bosma & van der Poorten: Computational Algebra
and Number Theory, 1995, Springer

http://www.math.colostate.edu/~hulpke/paper/gap4tut.pdf
http://www.math.colostate.edu/~hulpke/paper/gap4tut.pdf

