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Our motivation

* Users engage with an app in different ways — understand
them and use them to inform the app redesign.

 How should we identity and characterise the different
styles of use within a population of users?

e How does such characterisation evolve:
e over an individual user trace”?
e over a number of sessions?

e over days and months?



Case study: the AppTracker app

* Runs in the backgrounad

* Records opening and closing
of apps, locking and
unlocking the device

* Provides charts and statistics
about the device usage

e QOver 35K downloads




AppTracker main menu

* Overall Usage provides a
summary of all the data
recorded since AppTlracker
was installed:

+ Most Used Apps (Top Apps)

+ Stats

s....02-UK 7 16:20

Back Overall Stats

Usage stats

Recording data since 24 Jun 2013

Total usage time 14.3 hours
Number of apps used 31
Most used app Tweetbot >
Total app launches 510
Average daily use 40.9 minutes
Average daily apps used 9.8
Average app launches 24.3

Most active da

28 Jun 2013 3.4 hours »




AppTracker main menu

 Last 7 Days shows a stacked
bar graphs of usage of the top
5 apps during the last 7 days
of usage.

All usage

Monday 4 Nov

* Select by Period shows
statistics by any period of
interest, e.Q.
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+ most used app last Monday

+ time spent on Facebook last
week

+ device usage over a day



AppTracker state diagram

TermsAndConditions FeedbackView TaskView

UsageBarChartTopApps MainView Last7Days
TopApps SettingsView PeriodSelector
Stats InfoView AppsInPeriod

Y
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AppTracker hypothesised behaviour
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Overview of the analysis

e |[nstrument the app
e Clean and prepare the raw logged data

* |nfer activity patterns and user weightings for given
parameters and data sets

* Ask questions about the patterns using probabillistic
temporal properties and model checking in PRISM

e Compare user weightings / patterns distributions

e Discuss with developers to inform redesign
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Overview of the analysis

Not sequential!




Overview of the analysis

Complementary to other data

analytics methods
(e.g., SQL queries, visvalisations)



Instrument the app

Batch of
) ]
event timestamped
A ' logs of events
| event 9
_> ‘
;\ 7 event ~
User’'s phone Developers’ server

SGLog data logging infrastructure (SUM group@GU)
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Prepare the raw logged data

e User traces based on 15 selected state abstractions:

[{"deviceid":"xx:xx:xxXx:xXX:xxX:xxX","totalevents":230,"firstSeen":"2013-08-20
09:10:59","lastSeen":"2014-03-24 09:57:32","sessions":[[{"timestamp":"2013-08-20
09:11:02","data":"TermsAndConditions"}, {"timestamp":"2013-08-20 09:11:23",
"data":"Main"},{"timestamp":"2013-08-2009:11:46", "data":"TopApps"},
{"timestamp":"2013-08-20 09:11:50"”,"data":"Main"},
{"timestamp":"2013-08-2009:11:52","data":"Last7Days"},{"timestamp":"2013-08-20
09:11:56", "data":"Main"},{"timestamp":"2013-08-20:11:59", "data":"PeriodSelector"},
{"timestamp":"2013-08-20 09:12:04","data":"Main"},{"timestamp":"2013-08-20
09:12:06","data":"UseStop"}1,...

* Clean up the data: 489 user traces between Aug. 2013 - May 2014

e Segment the session data: intervals of days of usage [0,1), [1,7),
[7,30), [0,30), [30,60), [60,90)

 Compute the 15x15 transition-occurrence matrix for each
trace in a given data set
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Infer activity patterns

ook for K distinct behaviours

* Run a non-linear optimisation algorithm for parameter
estimation to learn K admixture bigram models from transition-

occurrences matrices

o K discrete-time Markov chains @k — activity patterns: O[i,j] is
the probability of moving from state i to state j while in ®x

e for each user trace, a weight vector (©1, ..., ©x) with Ok the
probability of using the ki activity pattern
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About PRISM

Probabilistic model checker (Birmingham & Oxford)

* probabilistic models expressed in a high-level state-based
language (DTMC, MDP, CTMC, etc.)

* model checking quantitative properties expressed as temporal
logic formulae (PCTL, CSL, PCTL*, etc.), extensions with

costs/rewards

* exhaustive analysis of all possible executions of the model

21



Activity patterns in PRISM

* Generate a PRISM model for each activity pattern

* 15 states — one for each view, including UseStop

e reward structures for:

e visiting a specific screen view (state) — reward value 1

* counting button taps (steps/transitions) — reward value 1

 What can we say about each activity pattern?
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Activity patterns for the first 30 days
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Discrete-time Markov chains:
the arrows are
probabilistic transitions.

2 patterns
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Activity patterns for the first 30 days

Discrete-time Markov chains:
the arrows are
probabilistic transitions.

2 patterns

3 patterns

4 patterns

APl AP2 AP3 AP



What questions can we ask”

* An exploratory process of identitying the “good” questions:
+ any type of app
+ a particular type of app (e.g. goal-oriented apps)

+ a particular app

* Find experiential questions in order to identify:

+ more relevant questions to ask and

+ most relevant states to query
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Formulate temporal properties
(PCTL with rewards)
* General guestions:

« Likelihood of viewing a particular screen for the first time within 100 taps.
e Average number of views of a particular screen within 20 button taps.

* Average number of button taps to reach a particular screen view, etc.

 More app-specific guestions:
« Probability to perform an event it always reading InfoView within 25 steps.
* Average number of button taps to go to screen view s, from s+,

* Probability of repeating a specific event 50 times, etc.
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Formulate temporal properties
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* General guestions:
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e Average number of views of a particular screen within 20 button taps.

* Average number of button taps to reach a particular screen view, etc.

 More app-specific guestions:
« Probability to perform an event it always reading InfoView within 25 steps.
* Average number of button taps to go to screen view s, from s+,

* Probability of repeating a specific event 50 times, etc.

Compare the results across all patterns!



Formulate temporal properties

+ Probability to reach the state s for the first time within N steps:
= P=? [!s U<=N s]

+ Expected number of visits to the state s within N steps:
= R{“r s"}=? [C<=N]

+ Expected number of steps to reach the state s:

= R{"r Steps”}=? [F s]
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Probabilistic model checking

* Probabilistic Computation Tree Logic (PCTL) with
rewards in PRISM

 Compare the results across:
* all activity patterns,

e states: TopApps, Stats, PeriodSelector, Last7Days,
UseStop,

e |intervals of days of usage [0,1), [1,7), [7,30), [0,30), [30,60),
[60,90)
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AppTracker hypothesised behaviour
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Probability

#steps
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0.2
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TopApps

Reachability probability within 50 steps

Stats

PeriodSelector

States

Last7Days

UseStop

Expected number of steps to reach each state

TopApps

Stats

PeriodSelector

States

Last7Days

UseStop

B Pattern
B Pattern2

B Pattern
B Pattern2
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wvisits

Expected number of visits to states within 50 steps

B Pattern
14 B Pattern2

TopApps Stats PeriodSelector Last7Days UseStop

States

First month analysis:
e two activity patterns (XK=2)

e Pattern 1
+ Higher TopApps and Stats
+ Shorter and more frequent sessions

e Pattern 2
+ Significant results for Last7Days and

PeriodSelector
+ Longer and less frequent sessions



Table 2: Property 1 (the probability of reaching a given state for the first time within N steps), Property 2
(the expected number of visits to a given state within N steps), and Property 3 (the expected number of
time steps to reach a given state) checked for different states and time cuts, and for N = 50 steps

Prop. | Time TopApps Stats PeriodSelector Last7Days [ UseStop |

cut [ AP1 | AP2 t AP1 [ AP2 | AP1 [ AP2 [ AP1 | AP2 | AP1 | AP2

= 0,1) | 099 | 099 | 099 | o83 | o047 | 079 | 049 | 096 | 099 | 0.99
z 1,7 | 099 | 099 | 098 | 0.80 0| 083 o| 088 | 099 | 099
% (7,30) | 099 | 099 | 099 | 064 | 001 | 094 | 084 | 096 | 099 | 0.99
£ [0,3) | 099 | 099 | 099 | 075 021 | 092 | 044 | 098 | 099 | 099
[30,60) | 099 | 0.99 o| o0 | 073| 083| 056 | 098 1| 099
60,90) | 1| 095 | 096 | 0.72 0| 084 0| 097 | 1| 099

2 10,1) | 1394 | 744 | 763 | 215| 079 | 1.82| 070 | 313 | 11.41 | 6.17
> n,7 | 1722 577 | 400 | 2.31 0| 397 0| 403 | 1291 | 6.30
g (7,30) | 1493 | 715 | 543 | 147| o001 | 461 | 1.78| 3.41 | 1286 | 5.74
£ [0,30) | 1467 | 648 | 508 | 1.90 024 | 358 | 058 | 399 | 11.00 | 6.5
[30,60) | 13.40 | 6.83 0| 376 | 441 | 204 | 085 | 4.54 | 1246 | 5.6
[60,90) | 17.30 | 583 | 2.94 | 2.60 0| 3.26 0| 443 | 1396 | 5.63

<3 10,1) 331 | 841 | B.18 | 2867 | 79.32 | 32.46 | 7487 | 1556 | 486 | 7.88
z 1,7) 2,06 | 10,70 | 12.44 | 31.90 oc | 19.12 oo | 1238 | 385 | 7.55
g (7,30) | 252 | 968 | 9.70 | 48.61 oo | 17.78 | 26.61 | 1458 | 3.88 | B.44
F [0,30) | 3.05| 973 | 11.01 | 36.03 | 209.68 | 19.94 | 87.5¢ | 12.19 | 467 | 7.43
(30,60) | 4.04 | 10.34 oc | 22.33 | 38.21 | 28.28 | 61.74 | 11.08 1| 882
[60,90) | 2.02 | 15.28 | 16.53 | 39.68 ac | 17.41 oo | 11.56 | 3.57 | 8.90
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Table 2: Property 1 (the probability of reaching a given state for the first time within N steps), Property 2
(the expected number of visits to a given state within N steps), and Property 3 (the expected number of
time steps to reach a given state) checked for different states and time cuts, and for N = 50 steps

Prop. | Time TopApps Stats PeriodSelector Last7Days [ UseStop |

cut [ AP1 | AP2 t AP1 [ AP2 | AP1 [ AP2 [ AP1 | AP2 | AP1 | AP2

= 0,1) | 099 | 099 | 099 | o83 | o047 | 079 | 049 | 096 | 099 | 0.99
z 1,7 | 099 | 099 | 098 | 0.80 0| 083 0| o098 | 099 | 099
% (7,30) | 099 | 099 | 099 | 064 | 001 | 094 | 084 | 096 | 099 | 099
£ [©0,30) | 099 | 099 | 090 | 075 021 | 092 | 044 | 098 | 099 | 0.99
[30,60) | 099 | 0.99 || . . B83i 056 | 098 1| 099
60,90) | 1| 095 0| 097 | 1| 099

= 0,1) | 1394 | 7.44 . : . ; 070 | 3.13 | 11.41 | 6.17
> n,7 | 1722 577 | 400 | 2.31 0| 397 0| 403 | 1291 | 6.30
g (7,30) | 1493 | 7.15 1.78 | 3.41 | 1286 | 5.74
£ [0,30) | 14.67 | 6.48 058 | 3.99 | 11.00 | 6.51
[30,60) | 13.40 | 6.83 085 | 4.54 | 1246 | 5.61
60,90) | 17.30 | 5.83 : : 0| 443 | 1396 | 563

<3 10,1) 331 | 841 | 8.18 | 2867 | 79.32 | 32.46 | 7487 | 1556 | 486 | 7.88
z 1,7) 2,06 | 10,70 | 12.44 | 31.90 oc | 19.12 oo | 1238 | 3.85 | 7.55
g (7,30) | 252 | 90.68 1458 | 3.88 | 8.44
F [0,30) | 3.05| 9.73 1219 | 467 | 7.43
(30,60) | 4.04 | 10.34 11.08 1| 882
[60,90) | 202 | 15.28 11.56 | 3.57 | 8.90




Probabilistic model checking

e For the second month data, [30,60), we need more discriminatory properties
* More app-specific questions:
+ Probability to reach s from t during the same session:
= filter(state, P=?[(!s & !"UseStop”) U<=N s], t)
- for (s, t) € {TopApps, PeriodSelector, Last7Days}-
+ Expected number of steps to reach s from t:
= filter(state, R{“r steps”}=?[F s], t)
- for (s, t) € {TopApps, PeriodSelector, Last7Days}
= for (s, t) € {TopApps, PeriodSelector, Last7Days} x Main

= for (s, t) € UseStop X {TopApps PeriodSelector, Last7Days}
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Probabilistic model checking

e Conclusions for KK=2 — two distinct activity
patterns labelled:

+ Overall viewing pattern (pattern 1) — higher level stats
visualisations

+ Time-partitioned viewing pattern (pattern 2) — in-depth
stats visualisations

33



Comparing pattern distributions

| O~ e
» First day dominated by 094 > &5 s |01
app exploration 084 ,‘//-' B(1.7)
0.7 4 yy 8730
* [nterval [30,60) sees a 064 ,,*/ B 30 .60)
rise in app exploration gi j /.' B [60.90)
* Intervals [1,7), [7,30), 034 S 4
160,90) — more settled 024 f -
usage behaviour 014 *:
00 4+— r T J '

Probability of a user trace to behave
according to the Time-partitioned viewing pattern
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Analysis for JK=3, first month data

1. Overall Viewing pattern:
 TopApps and Stats have best results for all three general properties,
e PerijiodSelector and Last7Days are absent,

* twice as short and twice more frequent sessions than for pattern #3.

2. 'weaker’ Overall Viewing pattern than pattern #1:
* TopApps has poorer results than #1, and better results than Stats and Last7Days in #2,

e PeriodSelector is absent.

3. Time-partitioned Viewing pattern:

* PeriodSelector has the best results, followed closely by TopApps and Last7Days.
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Analysis for KK=4, first month data

* Activity patterns:
1. mainly TopApps Viewing
2. mainly Stats — TopApps Viewing
3. Time-Partitioned Viewing
4. exclusive TopApps — UsageBarChartTopApps

* Shorter and more frequent sessions for #1 than for #2 and #3
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Comparing pattern distributions

K=2
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Inform the app redesign

 For K=2 no pattern is significantly

dominant, usage is fairly distributed
between the two patterns.

e Session length indicative of a more
suitable glancing-like view.

 From 3 to 2 main viewing options ?

1. glancing-like short interactions in a new
Overall Usage screen

2. longer interactions in a new Select by Period,
including Last 7 Days and more filtering and
querying tools
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Inform the app redesign

* Are users merely following the
suggested paths defined by the
interface?

 For XK=3 there is no pattern centred

uniquely around Select by Period, but
one centred around Last 7 Days, and
one around both.

 For K=4 Last 7 Days and Select by
Period always go together, the same is
true for K=5.

39



Inform the app redesign

For ZK=4 and K=5 we uncover

repeated switching between
TopApps and
UsageBarChartTopApps

e more investigatory than glancing
behaviour

e not just uncovering the menu
structure, but finding unexpected
behaviours

 move this loop from Overall Usage to
Select by Period ?

40
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Inform the app redesign

» Discovering glancing e
activity patterns for Monday,
widget extensions on 28" September

@ Partly cloudy currently. The high will be
17¢ Partly cloudy tonight with a low of 8°.

0S8 and 1059, or
glances on the Apple
Watch

“Meet students” is next up on your
calendar, at 16:00.

Armiaran

Q
« Typical glancing patterns = |
for AppTracker are Overall
Viewing and TopApps- |

centred patterns

Your Orders
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Conclusion — our contribution

e Populations of users characterised by inferred temporal
behaviours rather than user attributes

+ Inference of Markov models of usage patterns from logged user
sessions — activity patterns

+ Characterisation the activity patterns by probabilistic temporal
properties using model checking

* Analysis of a mobile app to inform developers about the
actual use and future redesign

42



Ongoing and future work

* Developing a code environment for the analysis — Blocks

 More apps to analyse and properties to identity:
+ Activity patterns combined with user attributes (timezone, device type)
+ Different probabilistic models, e.g., Hierarchical Hidden Markov models
+ Game app: Hungry Yoshi — for a richer dataset of user traces

+ Activity tracking/health apps: MatchFIT, Quped — to be released soon
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A POPULATION APPROACH TO UBICOMP SYSTEM DESIGN

A Population Approach to Ubicomp System Design is a five year Drawing metaphorically from biological concepts of species and
research programme working towards a new science of evolution, The Populations Programme accepts and takes advantage
software structures. of the scale, variety and dynamism possible in contemporary soft-

ware. We treat software class as a varied and changing population of
The Populations research programme is funded by an EPSRC Pro- software instances in use.
gramme Grant (EP/J007617/1). It is a collaboration between the

University of Glasgow and the University of Warwick.

www.softwarepopulations.com

Thank you!

Questions?


http://www.softwarepopulations.com

