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ABSTRACT 
We discuss some of our recent experiments using Google’s 
Soli alpha kit on monitoring different glucose levels among 
various sample sets in-vitro. These experiments are part of 
our ongoing campaign to investigate the suitability of using 
mm-waves for non-invasive glucose monitoring among 
patients with diabetes.  
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INTRODUCTION 
Diabetes is a disease directly caused by failure of the 
pancreas in producing a steady supply of hormone insulin, 
because insulin enables the body's cells to accept glucose in 
the bloodstream as caloric energy. Unmanaged diabetes 
among patients could lead to many serious complications 
such as heart disease, stroke, coma, kidney failure, blindness, 
amputation, and premature death [1]. 

Diabetes is classified into two categories:  type 1 and type 2.  
The Canadian Diabetes Association recommends monitoring 
of blood glucose at least as often as insulin intake (four times 
daily) for type 1 patients, and two times daily for type 2 
patients to meet glycemic targets [2]. To check for blood 
glucose, blood from the tip of the finger is drawn, and then 
analyzed on a glucometer. Finger-pricking has been the only 

medically accepted daily glucose monitoring technique for 
diabetic patients in north America until as recent as 2012, 
when the US Food and Drug Administration has approved its 
first continuous glucose monitoring (CGM) system [3], 
which uses the so called artificial pancreas as an automated 
closed-loop glucose detection and insulin administration 
device that lessens the frequency of daily finger-pricking.  
However, artificial pancreas also performs glucose analysis 
invasively through the skin, which is non-ideal or non-
feasible in many health situations. 

From the perspective of device operation, the methods of 
glucose monitoring can be essentially categorized as 
invasive, minimally invasive, and non-invasive. Invasive 
devices detect glucose from subcutaneous or intravenous 
bodily fluids:  besides analyzing glucose level via blood 
drawn from the finger, there are wireless implants with radio 
frequency capabilities to communicate glucose data to an 
external controller for analysis. Minimally invasive devices 
detect glucose externally via extracted interstitial fluid from 
skin tissues. They differ from invasive devices in that the 
techniques to extract interstitial fluid do not cause significant 
damage to the tissue. There is discomfort and risks of 
infection from both invasive and minimally-invasive 
techniques, and researchers in both academia and industry 
are working on non-invasive techniques for detecting 
glucose from external body-fluids such as sweat and tear. 

There have been thorough investigations on alternative non-
invasive methods of blood glucose monitoring over the last 
decade. Absorbance spectroscopy techniques, such as near-
infrared and mid-infrared spectroscopy [4], have been 
commonly researched where the scattering of light on 
biological tissue is used to detect the optical signatures of 
glucose in blood. However, in addition to being costly to 
implement, these methods are also highly sensitive to 
changes to physiological parameters, such as body 
temperature and blood pressure, as well as environmental 
variations in temperature and humidity. Several research 
studies have been done on utilizing bodily fluids to correlate 
blood glucose concentrations in breath [5], saliva [6] , sweat 
[7], and tear fluid [8]. Despite being quite innovative, these 
proposed methods either show a low correlation between the 
measured parameters and blood glucose levels or the 
proposed designs are still in their infancy to judge their 
applicability [9].  
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On the other hand, radio frequencies have also been 
investigated for applications in continuous blood glucose 
monitoring. The presented concept designs generally involve 
measuring the reflection and transmission coefficients 
through the skin (and hence the dielectric constant and 
permittivity of the blood) with transmitters and receivers 
placed near areas such as the finger tips or ear lobes 
[10,11,12]. Almost all published works use a single channel 
deterministic VNA system (1 Tx to 1 Rx), with significant 
mounting and alignment issues that hinder the possibilities 
of realizing a user friendly system. Alignment and 
repeatability are known problems in bio-identification, and 
our recent work with Soli’s [16] multi-channel AI/ML 
engines have demonstrated a working prototype [13]. We 
have also had very decent success with gas detection [14]. 
While other teams successfully demoed object identification 
[15]. Encouraged by the recent successes, we have been 
investigating the potentials of using Soli [16] in glucose 
monitoring.  
 

SANITY CONCEPT CHECKS 
We started our measurements campaign with a simple 
question: Can we use a multi-channel radar to differentiate 
among a coke, diet coke, and zero coke? Fundamentally, 
each drink has a different amount of sugar dissolved. We ran 
our tests using a 4-port Keysight N5227A PNA-67GHz 
Microwave Network Analyzer. Each port was fitted with V-
band adapters connected to WR-15 horn antennas beneath 
glass cups holding the drinks. It was very clear that even just 
one channel reflection data were enough to easily 
differentiate among all drinks as depicted in Fig. 1 (showing 
the magnitude of the reflection coefficient in all three cases) 
and Fig. 2 (showing the unwrapped phase of the reflection 
coefficient in all three cases). Clear differences are also noted 
in other inter-port coefficients (not plotted here for brevity). 

 
Fig. 1. Scattering parameter data using a 4-port VNA. 

 
Fig. 2. Unwrapped phase of the input reflection coefficient for one 
port of the 4-port VNA. 

 
Fig. 3. Experimental setup using Soli. 

 
Fig. 4. Max magnitude of one of the Soli channels for the different 
coke drinks. 

We repeated the same experiment but using Soli rather than 
the 4-port analyzer. Soli has a 2 Tx and 4 Rx radar system, 
thus effectively capable of detecting minute differences in 
the reflected waves as a rich multi-channel system [16]. We 
used machine learning to “educate” the Soli to detect 
different drinks regardless of the container and exact position 
with respect to Soli. Fig. 3 demonstrates one of the 
experimental setups. The measurements taken with the radar 
sensor as the training data were utilized to create a 
classification model generated through a random forest 
classifier. The random forest classifier is a supervised 
machine learning algorithm that is composed of a series of 
decision trees. A decision tree maps any observation of the 
data to a conclusion about the object’s value. In the context 
of this work, the four processed data metrics along with the 
magnitude of the backscattered signals (such as that shown 
in Fig. 4) form the observations of the object, while the 
predicted glucose-water concentration is the object’s value. 
At the end of decision tree process, the most prevalent 
conclusion reached by all the decision trees is outputted as 
the object’s predicted value. The accuracy of the 
classification models can be expressed via the percent 
likelihood of the model returning the correct prediction. To 
summarize the performance of the classification models, 
confusion matrices were used to show the percent likelihoods 
of different combinations of true and predicted values. The 
resulting confusion matrix likelihoods for the different cokes 
measurement was consistently in the high 90% 
demonstrating a remarkable detection accuracy. 
 
FURTHER EXPERIMENTS  
To model human blood, samples of glucose-water at healthy 
and diabetic blood sugar level concentrations were used and 
a series of measurements were done to find the lower limit 



and resolution of the radar sensitivity. For a 2 hour post-
prandial diagnosis, a person is considered to be diabetic if 
their blood glucose levels exceeds 2.0 mg/mL, while a 
healthy person’s blood sugar levels generally falls below 1.4 
mg/mL [17]. During fasting, the blood glucose levels of a 
healthy person is expected to fall below 1.08 mg/mL while 
diabetics exceed 1.26 mg/mL [17]. With these 
concentrations in mind, the ability of the radar to 
discriminate between five samples of glucose-water with 
concentrations ranging from 1.0 mg/mL to 2.0 mg/mL at 
0.25 mg/mL increments was tested. 

We summarize here three distinct set of measurements: 
Glucose-water samples in Petri dish, 3D printed ear-model 
with Glucose-water solution, and meat slices soaked in the 
glucose-water samples.  

 

Case 1: Petri-dish  
Fig. 5 displays the data from one of the Soli channels when 
using the Petri dish for different concentrations. Similar to a 
very expensive VNA system, it is clear that SOLI can be used 
to reliably distinguish between different concentrations. 

 
Fig. 5. Max magnitude of one of the Soli channels for the different 
concentrations. 

 

Case 2: Using the 3D printed ear model  
Since the human skin is not perfectly planar, a 3D model 
replicating the curvatures of the human ear was used to 
demonstrate the performance of the concept system (Fig. 6). 
The ear was selected since the thickness of the skin around 
the earlobe region is minimal and ideal for blood glucose 
measurements. The ear model had an ear lobe thickness of 
1.1 mm and was made from a silicone rubber-carbon black 
composite. Small amounts of glucose-water were injected 
into the earlobe section to simulate blood flowing in the 
earlobe.  Fig. 7 displays select Soli raw output when using 
the 3D printed ear model. Again, it is clear that SOLI can be 
used to reliably distinguish between different concentrations. 

                    
Fig. 6. 3D printed Silicone Ear model 

 
Fig. 7. Max magnitude of one of the Soli channels for the different 
concentrations using the silicone ear model. 

 

Case 3: Using cow meat 
The next set of measurements used slices of cow meat with 
1 mm thickness to asses if the mm-Wave signals emitted by 
the radar can adequately penetrate biological tissue of this 
thickness. All pieces had nearly an identical cut, dipped in a 
glucose-water solution of a given concentration, and each 
piece of meat utilized was measured first using a VNA. 
Unlike previous cases, the scattering parameters were nearly 
identical in all cases (See for example Fig. 8). However, the 
phase data was unique among each case (such as depicted in 
Fig. 9). Such fundamental differences in the scattered waves 
helped Soli resolve such subtle differences in concentrations 
as shown in Fig. 10.  

 
Fig. 8. Scattering parameter data for the meat in 2 different glucose-
water concentrations using a 4-port VNA. 



 
Fig. 9. Unwrapped phase of the input reflection coefficient for one 
port of the 4-port VNA when observing the behavior meat in 2 
different glucose-water concentrations. 

 
Fig. 10. Max magnitude of one of the Soli channels for the different 
meat/glucose-water concentrations. 

 
CONCLUSIONS AND DISCUSSIONS 
Using pop drinks and various concentrations of sugar water 
near blood glucose ranges for diagnosing diabetes, we 
showed the sensitivity of Google Soli system in being able 
to discriminate between various glucose-water 
concentrations at a high accuracy. We utilized silicone 
rubber structures and animal meat as human tissue-
equivalent phantoms for further validations.  

We are currently running a large campaign with various 
actual blood samples to further investigate the suitability of 
using a system like Soli in non-invasive glucose sensing. 

However, it should be stressed that despite having promising 
preliminary results, this area is still in its infancy, and we 
believe that there is tremendous research due before non-
invasive electromagnetic-based monitoring of diabetes 
through skin can become a reality. Among the many 
challenges to address is the fact that scattered 
electromagnetic energy through skin/blood stream is known 
to vary with naturally varying physiological parameters such 
as moisture levels, sweat, temperature, and tissue scarring. 
Such variations can significantly affect the detection system. 
Attempts to minimize their impact are part of our ongoing 
research campaign. 
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