

Management of Broadband Wireless Access networks

Giacomo "mino" Bernardi

joint work with Mahesh Marina and Peter Buneman

Broadband Wireless Access (BWA) networks

- BWA as effective mean to provide broadband Internet access to remote subscribers.
- Many reasons are making wireless an attractive solution for the "last mile" coverage:
 - Lower financial requirements than copper and fibre
 - Freedom from market incumbent
 - Ongoing spectrum "deregulation" and licensing of new frequencies
 - Recent developments in wireless standards
 - Does not require any existing infrastructure, especially attractive for rural regions
 - Mobile usage
- More and more ISPs are moving to "all wireless" networks:
 - access tier is wireless!
 - backhauling is wireless!

The network model: a ring of stars...

Two types of devices

- Base transmitting stations (BTS)
- Customer premises equipment (CPE)

Two types of links

- Point-to-point (PTP) for backhauling
- Point-to-multipoint (PMP) for local access
- A common topology is thus a ring of stars:
 - easy to connect remote users
 - robust backbone

Our tegola testbed

Our tegola testbed

Our tegola testbed

Our tegola testbed

Our tegola testbed

The BTS platform

- BTS devices:
 - are core components of the backbone network
 - act as master in point-to-multipoint links
 - can handle **IP routing** and QoS
- Our BTS platform is based on Gateworks Avila boards running Linux, equipped 4 indipendent radios and two ethernet interfaces.

The CPE platform

- The CPE device is housed by the subscriber.
- It marks the border between the ISP cloud and the subscriber local network.
- Typically it provides DHCP, NAT, authentication and basic firewalling.
- Our CPE platform is composed by an x86 embedded board from PCengines equipped with two 802.11abg radios and an ethernet interface.

Advancements in BWA hardware

- Carrier-grade wireless hardware market is in **costant growth** (+37.5% in the last 12 months in the US).
- Higher competition generates compromises.
 - Even mid-sized ISPs use devices from **several vendors** and on **different wireless technologies**.
- Some vendors are specialized in PTP products, others in PMP, but all try to impose **their own infrastructure**.
- Devices are controlled over SNMP (private MIBs) or via proprietary protocols.
- CPEs are getting smarter (i.e.: **femtocells**).

What is management?

- Managing equipment for a WISP is worth as the equipment itself.
- FCAPS model: Fault management, Configuration, Accounting, Performance and Security:

F	С	A	P	S
Fault detection	Resource initialization	Track service / resource usage	Utilization & error rates	Selective resource access
Fault correction	Network provisioning	Cost for services	Consistent performance level	Enable NE functions
Fault isolation	Auto-discovery	Accounting limit	Performance data collection	Access logs
Network recovery	Backup and restore	Combine costs for multiple resources	Performance report generation	Security alarm / event reporting
Alarm handling	Resource shut down	Set quotas for usage	Performance data analysis	Data privacy
Alarm filtering	Change management	Audits	Problem reporting	User access rights checking
Alarm generation	Pre-provisioning	Fraud reporting	Capacity planning	Take care of security breaches & attempts
Clear correlation	Inventory/asset management	Support for different modes of accounting	Performance data & statistics collection	Security audit trail log
Diagnostic test	Copy configuration		Maintaining & examining historical logs	Security related information distributions
Error logging	Remote configuration			
Error handling	Job initiation, tracking & execution			
Error statistics	Automated software distribution			

SNMP, a "de facto" standard

- Simple Network Management Protocol, standardized by IETF in the 80s.
- It's minimalist, lightweight, inexpensive for a manufacturer to adopt.
- Flaws:
 - It specifies only the syntax of data
 - Since it works "in band", it generates an intrinsic disturbance (heisenberg uncertainty)
 - Polling frequency is determined by the client
 - It lacks transactionality
 - Commands cannot have a flexible number of parameters
 - No queries based on object value or type
 - The "private MIB space" has degenerated (e.g.: Cisco has hundreds of thousands OIDs!)
- ...so basically it is an end-to-end data-moving protocol!

A bunch of use cases

• Firmware upgrades:

remotely modifying the operating system of a horde of critical devices.

Bulk configuration changes:

e.g.: set the ESSID to all BTSs, change frequency of devices in an area.

• Deployment of new devices:

how to prepare and configure CPEs before shipping them to subscribers.

• Historical performances query:

"how has that link performed over the last month?"

Verify frequency planning:

check than a CPE cannot see more than a BTS on the same freq.

Triggered actions:

have a device perform an action without manual intervention.

The "state of the art"

- On the market there is a myriad of network management software platforms:
 - Products developed by hardware vendors typically work only with devices of the same brand.
 - Third parties solutions often rely on standard SNMP MIBs.
- They all bank on:
 - remote servers they run on
 - the existence of a database
 - always-on links

The network is the datacenter

- Traditional management software follows an "end-to-end" paradigm: it runs on a remote server at the ISP datacenter and connects to each remote device.
- Modern network equipment **not very different** from a datacenter.

Ideas from the academic community

- The IETF "Remote Network Monitoring" (RMON) to manage remote sites from a central location. It gives a certain level of decentralization over SNMP.
- Active Networks (early 90s) and Smart Packets: create more intelligent networks by introducing dynamic network programming, allowing routers to execute binary code received in packets.
- Management by Delegation (1995): server send applications to clients, the software is run where the data is.
- Netscript (1998): developed by IBM to provide a generic runtime environment on the nodes
- Real adoption of these ideas

Proposed approach

Key concepts:

- **Device indipendence:** even in mid-sized WISP networks it is common to find devices from different vendors. Do not assume every device can be managed.
- **Delegation:** as we authorize someone else to perform tasks on our behalf, a similar behavior can be applied to network devices.
- Local responsability: it sould be possible to elect a device as responsible for a particular region.
- **Scattered knowledge:** facts about the network should be stored in the network itself, the network *is* the database.

Thank you

www.tegola.org.uk