Kami Vaniea (Edinburgh): Usable Security: From URLs to Updates (School Seminar)

Abstract:

Usable security is about exploring the relationship between the tools
which are supposed to keep people safe and the ways that people interact
with them. In this talk, I will be discussing two of my recent projects:
URL readability and reasons for avoiding software updates. URLs are a
nearly ubiquitous method of telling another person where to find
content. They are used extensively in emails, social networking and
other communications. The security community complains about people
clicking on fraudulent URLs, yet surprisingly little is known about how
people parse and interpret them. Similarly, software updates are
becoming a common feature of using a computing device, many of which
demand to be updated daily, if not hourly. Security experts agree that
installing updates is one of the best ways to stay safe, yet many people
avoid updating. I will discuss studies my lab has run on both of these
topics.

Speaker Bio:

Dr Kami Vaniea is a Lecturer at the University of Edinburgh studying
human factors of security and privacy. She heads the Technology
Usability Lab In Privacy and Security (TULIPS) which looks at many
different aspects of usability, prvaicy and security including
educational game design, internet of things, and software updating.
Previously Dr Vaniea was an Assistant Professor at Indiana University, a
post doc researcher at Michigan State University and completed her PhD
at Carnegie Mellon University.

Event details

  • When: 6th February 2018 14:00 - 15:00
  • Where: Cole 1.33a
  • Series: School Seminar Series
  • Format: Seminar

Cecilia Mascolo (Cambridge): Systems, Models and Learning: From mobile devices to mobile data (School Seminar)

Abstract:

This talk concentrates on our efforts over the years to make the harvesting of relevant data from mobile devices accurate and efficient, to allow on device data interpretation and to produce models able to interpret the data so that it can be exploited for a wide range of applications. In this sense I will describe specifics of our work which range from fitting mobile sensing inference on devices and how we are able to exploit local device heterogeneous computation resources efficiently to data analytics for mobile health and urban computing. I will discuss challenges and opportunities of the field throughout the talk.

Speaker Bio:

Cecilia Mascolo is a mother of a teenage daughter. She is also Full Professor of Mobile Systems in the Computer Laboratory, University of Cambridge, UK, a Fellow of Jesus College Cambridge and a Faculty Fellow at the Alan Turing Institute for Data Science in London. Prior joining Cambridge in 2008, she has been a faculty member in the Department of Computer Science at University College London. She holds a PhD from the University of Bologna. Her research interests are in human mobility modelling, mobile and sensor systems and networking and spatio-temporal data analysis. She has published in a number of top tier conferences and journals in the area and her investigator experience spans projects funded by Research Councils and industry. She has received numerous best paper awards and in 2016 was listed in “10 Women in Networking /Communications You Should Know”. She has served as steering, organizing and programme committee member of mobile, sensor systems, networking, data science conferences and workshops. She has delivered a number of keynote talks at conferences and workshops in the area of mobility, data science, pervasive computing and systems. She is Associate Editor in Chief for IEEE Pervasive Computing and sits on the editorial boards of IEEE Transactions on Mobile Computing, ACM Transactions on Sensor Networks and ACM Transactions on Interactive, Mobile, Wearable and Ubiquitous Technologies. More details at www.cl.cam.ac.uk/users/cm542.

Event details

  • When: 30th January 2018 14:00 - 15:00
  • Where: Cole 1.33a
  • Series: School Seminar Series
  • Format: Seminar

Adriana Wilde (St Andrews): Rising to challenges in assessment, feedback and encouraging gender diversity in computing (School Seminar)

Abstract

This talk is in two parts, in the first of which Adriana will focus on her experiences in assessment and feedback in large classes, and in the second part on her work in encouraging gender diversity in computer science.

The focus of the first part will be on her involvement in redesigning an undergraduate module on HCI, where the methods of assessment used were no suitable for increasingly larger classes (up to 160 students). Redesign decisions needed to preserve the validity and reliability of the assessment whilst respecting the need for timely feedback. Adriana will specifically talk about the exam and coursework, and how learning activities in the module were aligned to the assessment, through the use of PeerWise for student-authored MCQs, and the use of video for assessment to foster creativity and application of knowledge. During the talk, there will be an opportunity for discussion on the challenges then encountered.

A (shorter) second part of the talk will present her experiences in supporting women in computing, starting with a very small-scale intervention with staff and students at her previous institution, and concluding with her engagement at the Early Career Women’s Network in St Andrews.

Event details

  • When: 23rd January 2018 14:00 - 15:00
  • Where: Cole 1.33a
  • Series: School Seminar Series
  • Format: Seminar

Pireh Pirzada: Sensors in Smart Homes for independent living of elderly people

Title: Sensors in Smart Homes for independent living of elderly people

Abstract: In the UK alone approximately about 3.64 million people aged 65 or above live on their own, and this number is rising. This increases concern of the safety and wellbeing of an ageing population, as growing old often results in reduced capabilities for individuals to perform activities of daily living (ADL), which will soon have a compounded effect on wider societal health care and the economy. Recent technological advances allow logging, monitoring and tracking behaviour can be put to the service of reducing this burden, allowing elderly people to remain in their own homes safely and independently. In this talk, I will describe my MSc dissertation work on a system designed for recording ADL, monitoring, classifying, predicting and alerting concerned people if anything out of regular pattern or life threatening happening occurs using unobtrusive sensors so that their quality of life is not impaired. This development has highlighted a number of areas for extension and improvement which can be further explored in the context of my doctoral research, which I will also outline within this talk.

This dissertation work was completed at the University of Southampton in September 2017 under the supervision of Neil White and Adriana Wilde.

Event details

  • When: 12th December 2017 14:00 - 15:00
  • Where: Cole 1.33b
  • Format: Seminar, Talk

“Sensing and topology: some ideas by other people, and an early experiment” by Simon Dobson

Abstract
The core problem in many sensing applications is that we’re trying to
infer high-resolution information from low-resolution observations —
and keep our trust in this information as the sensors degrade. How can
we do this in a principled way? There’s an emerging body of work on
using topology to manage both sensing and analytics, and in this talk I
try to get a handle on how this might work for some of the problems
we’re interested in. I will present an experiment we did to explore
these ideas, which highlights some fascinating problems.

Event details

  • When: 30th November 2017 13:00 - 14:00
  • Where: Cole 1.33a
  • Series: Systems Seminars Series
  • Format: Seminar

Edgar Chavez (CICESE): The Metric Approach to Reverse Searching (School Seminar)

Abstract:
Searching for complex objects (e.g. images, faces, audio or video), is an everyday problem in computer science, motivated by many applications. Efficient algorithms are demanded for reverse searching, also known as query by content, in large repositories. Current industrial solutions are ad hoc, domain-dependant, hardware intensive and have limited scaling. However, those disparate domains can be modelled, for indexing and searching, as a metric space. This model has been championed to become a solution to generic proximity searching problems. In practice, however, the metric space approach has been limited by the amount of main memory available.

In this talk we will explore the main ideas behind this technology, present a successful example in audio indexing and retrieval. The application scales well for large amounts of audio because the representation is quite compact and the full audio streams are not needed for indexing and searching.

Speaker Bio:
Edgar Chavez received his Phd from the Center for Mathematical Research in Guanajuato, Mexico in 1999. He founded the information retrieval group at Universidad Michoacana where he worked until 2012. After a brief period in the Institute of Mathematics in UNAM, he joined the computer science department in CICESE in 2013, where he founded the data science group. His main research interest include access and retrieval of data and data representation, such as fingerprints and point clouds. In 2009 he obtained the Thompson-Reuters award for having the most cited paper in computer science in Mexico and Latin America. In 2008 he co-funded, with Gonzalo Navarro, the conference Similarity Search and Applications, which is an international reference in the area. He has published more than 100 scientific contributions, with about 3500 citations in google scholar.

Event details

  • When: 5th December 2017 14:00 - 15:00
  • Where: Cole 1.33a
  • Series: School Seminar Series
  • Format: Seminar

Computational Approaches for Accurate, Automated and Safe Cancer Care – HIG Seminar

Modern external beam radiation therapy techniques allow the design of highly conformal radiation treatment plans that permit high doses of ionsing radition to be delivered to the tumour in order to eradicate cancer cells while sparing surrounding normal tissue. However, since it is difficult to avoid irradiation of normal tissue altogether and ionising radiation also damages normal cells, patients may develop radiation-induced toxicity following treatment. Furthermore, the highly conformal nature of the radiation treatment plans makes them particularly susceptible to geometric or targeting uncertainties in treatment delivery. Geometric uncertainties may result in under-dosage of the tumour leading to local tumour recurrence or unacceptable morbidity from over-dosage of neighbouring healthy tissue.

I will present work in three areas that bear directly on treatment accuracy and safety in radiation oncology. The first area addresses the development of automated image registration algorithms for image-guided radiation therapy with the aim of improving the accuracy and precision of treatment delivery. The registration methods I will present are based on statistical and spectral models of signal and noise in CT and x-ray images. The second part of my talk addresses the identification of predictors of normal tissue toxicity after radiation therapy and the study of the spatial sensitivity of normal tissue to dose. I will address the development of innovative methods to accurately model the spatial characteristics of radiation dose distributions in 3D and results of the analysis of this important, but heretofore lacking, information as a contributing factor in the development of radiation-induced toxicity. Finally, given the increasing complexity of modern radiation treatment plans and a trend towards an escalation in prescribed doses, it is important to implement a safety system to reduce the risk of adverse events arising during treatment and improve clinical efficiency. I will describe ongoing efforts to formalise and automate quality assurance processes in radiation oncology.

Biography
Reshma Munbodh is currently an Assistant Professor in the Department of Diagnostic Imaging and Therapeutics at UConn Health. She received her undergraduate degree in Computer Science and Electronics from the University of Edinburgh and her PhD in medical image processing and analysis applied to cancer from Yale University. Following her PhD, she performed research and underwent clinical training in Therapeutic Medical Physics at the Memorial Sloan-Kettering Cancer Center. She is interested in the development and application of powerful analytical and computational approaches towards improving the diagnosis, understanding and treatment of cancer. Her current projects include the development of image registration algorithms for image-guided radiation therapy, the study of normal tissue toxicity following radiation therapy, longitudinal studies of brain gliomas to monitor tumour progression and treatment response using quantitative MRI analysis and the formalisation and automation of quality assurance processes in radiation oncology.

Event details

  • When: 22nd November 2017 14:00 - 15:00
  • Where: Cole 1.33a
  • Series: HIG Seminar Series
  • Format: Seminar

SRG Seminar: “Interactional Justice vs. The Paradox of Self-Amendment and the Iron Law of Oligarchy” by Jeremy Pitt

Self-organisation and self-governance offer an effective approach to resolving collective action problems in multi-agent systems, such as fair and sustainable resource allocation. Nevertheless, self-governing systems which allow unrestricted and unsupervised self-modification expose themselves to several risks, including the Suber’s paradox of self-amendment (rules specify their own amendment) and Michel’s iron law of oligarchy (that the system will inevitably be taken over by a small clique and be run for its own benefit, rather than in the collective interest). This talk will present an algorithmic approach to resisting both the paradox and the iron law, based on the idea of interactional justice derived from sociology, and legal and organizational theory. The process of interactional justice operationalised in this talk uses opinion formation over a social network with respect to a shared set of congruent values, to transform a set of individual, subjective self-assessments into a collective, relative, aggregated assessment.

Using multi-agent simulation, we present some experimental results about detecting and resisting cliques. We conclude with a discussion of some implications concerning institutional reformation and stability, ownership of the means of coordination, and knowledge management processes in ‘democratic’ systems.

Biography
Photograph of Professor Jeremy Pitt
Jeremy Pitt is Professor of Intelligent and Self-Organising Systems in the Department of Electrical & Electronic Engineering at Imperial College London, where he is also Deputy Head of the Intelligent Systems & Networks Group. His research interests focus on developing formal models of social processes using computational logic, and their application in self-organising multi-agent systems, for example fair and sustainable common-pool resource management in ad hoc and sensor network. He also has strong interests in human-computer interaction, socio-technical systems, and the social impact of technology; with regard to the latter he has edited two books, This Pervasive Day (IC Press, 2012) and The Computer After Me (IC Press, 2014). He has been an investigator on more than 30 national and European research projects and has published more than 150 articles in journals and conferences. He is a Senior Member of the ACM, a Fellow of the BCS, and a Fellow of the IET; he is also an Associate Editor of ACM Transactions on Autonomous and Adaptive Systems and an Associate Editor of IEEE Technology and Society Magazine.

Event details

  • When: 15th November 2017 13:00 - 14:00
  • Where: Cole 1.33a
  • Series: Systems Seminars Series
  • Format: Seminar

“Ambient intelligence with sensor networks” by Lucas Amos and “Location, Location, Location: Exploring Amazon EC2 Spot Instance Pricing Across Geographical Regions” by Nnamdi Ekwe-Ekwe

Lucas’s abstract

“Indoor environment quality has a significant effect on worker productivity through a complex interplay of factors such as temperature, humidity and levels of Volatile Organic Compounds (VOCs).

In this talk I will discuss my Masters project which used off the shelf sensors and Raspberry Pis to collect environmental readings at one minute intervals throughout the Computer Science buildings. The prevalence of erroneous readings due to sensor failure and the strategy used for the identification and correction of such faults will be presented. Identifiable correlations between environmental variables and attempts to model these relationships will be discussed

Past studies identifying the ideal environmental conditions for human comfort and productivity allow for the objective assessment of indoor environmental conditions. An adaptation of Frešer’s environment rating system will be presented, showing how VOC levels can be incorporated into assessments of environment quality and how this can be communicated to building users.”

Nnamdi’s abstract

“Cloud computing is becoming an almost ubiquitous part of the computing landscape. For many companies today, moving their entire infrastructure and workloads to the cloud reduces complexity, time to deployment, and saves money. Spot Instances, a subset of Amazon’s cloud computing infrastructure (EC2), expands on this. They allow a user to bid on spare compute capacity in Amazon’s data centres at heavily discounted prices. If demand was ever to increase such that the user’s maximum bid is exceeded, their compute instance is terminated.

In this work, we conduct one of the first detailed analyses of how location affects the overall cost of deployment of a spot instance. We simultaneously examine the reliability of pricing data of a spot instance, and whether a user can be confident that their instance has a low risk of termination.

We analyse spot pricing data across all available Amazon Web Services regions for 60 days on a variety of instance types. We find that location does play a critical role in spot instance pricing and also that pricing differs depending on the granularity of the location – from a more coarse-grained AWS region to a more fine-grained Availability Zone within a region. We relate the pricing differences we find to the price’s stability, confirming whether we can be confident in the bid prices we make.

We conclude by showing that it is very possible to run workloads on Spot Instances achieving
both a very low risk of termination as well as paying very low amounts per hour.”

Event details

  • When: 9th November 2017 13:00 - 14:00
  • Where: Cole 1.33a
  • Series: Systems Seminars Series
  • Format: Seminar

SACHI Seminar: Alix Goguey (University of Saskatchewan) – Augmenting touch expressivity to improve the touch modality

 

Title

Augmenting touch expressivity to improve the touch modality

Abstract

During the last decades, touch surfaces have become more and more ubiquitous. Whether on tablets, on smartphones or on laptops, touch surfaces are used by a majority of us on a daily basis. However, the limited expressivity – the different channels used to convey information to the system – of the touch modality restricts drastically the amount of features that can be controlled via touch only. For instance, a typical smartphone touchscreen only provides the absolute position of a contact on the screen, thus applications usually offer only one way to carry out tasks (which can augment user frustration or cap performances) or restrict possibilities (e.g. Photoshop on desktop offers more than 600 commands but only about 40 on smartphones and tablets). In this talk, I will present an overview of my on-going research and discuss different ways to tackle this problem, augment touch expressivity and user efficiency: from tools that helps better designing touch interfaces to the use of new input dimensions in original interaction techniques.

Speaker biography

Alix Goguey is a post postdoctoral fellow working with Carl Gutwin in the Interaction Lab at the University of Saskatchewan, Canada. He received his Ph.D. in Computer Science in October 2016 in the Mjolnir research group at Inria Lille – Nord Europe, France, under the supervision of Géry Casiez. His work focuses on understanding and designing interaction techniques on touch input devices and particularly through the use of new information such as finger identification. To learn more about Alix’s work: www.alixgoguey.fr

Event details

  • When: 1st November 2017 13:15 - 14:15
  • Where: Honey 103 - GFB
  • Format: Seminar