Cecilia Mascolo (Cambridge): Systems, Models and Learning: From mobile devices to mobile data (School Seminar)

Abstract:

This talk concentrates on our efforts over the years to make the harvesting of relevant data from mobile devices accurate and efficient, to allow on device data interpretation and to produce models able to interpret the data so that it can be exploited for a wide range of applications. In this sense I will describe specifics of our work which range from fitting mobile sensing inference on devices and how we are able to exploit local device heterogeneous computation resources efficiently to data analytics for mobile health and urban computing. I will discuss challenges and opportunities of the field throughout the talk.

Speaker Bio:

Cecilia Mascolo is a mother of a teenage daughter. She is also Full Professor of Mobile Systems in the Computer Laboratory, University of Cambridge, UK, a Fellow of Jesus College Cambridge and a Faculty Fellow at the Alan Turing Institute for Data Science in London. Prior joining Cambridge in 2008, she has been a faculty member in the Department of Computer Science at University College London. She holds a PhD from the University of Bologna. Her research interests are in human mobility modelling, mobile and sensor systems and networking and spatio-temporal data analysis. She has published in a number of top tier conferences and journals in the area and her investigator experience spans projects funded by Research Councils and industry. She has received numerous best paper awards and in 2016 was listed in “10 Women in Networking /Communications You Should Know”. She has served as steering, organizing and programme committee member of mobile, sensor systems, networking, data science conferences and workshops. She has delivered a number of keynote talks at conferences and workshops in the area of mobility, data science, pervasive computing and systems. She is Associate Editor in Chief for IEEE Pervasive Computing and sits on the editorial boards of IEEE Transactions on Mobile Computing, ACM Transactions on Sensor Networks and ACM Transactions on Interactive, Mobile, Wearable and Ubiquitous Technologies. More details at www.cl.cam.ac.uk/users/cm542.

Event details

  • When: 30th January 2018 14:00 - 15:00
  • Where: Cole 1.33a
  • Series: School Seminar Series
  • Format: Seminar

Adriana Wilde (St Andrews): Rising to challenges in assessment, feedback and encouraging gender diversity in computing (School Seminar)

Abstract

This talk is in two parts, in the first of which Adriana will focus on her experiences in assessment and feedback in large classes, and in the second part on her work in encouraging gender diversity in computer science.

The focus of the first part will be on her involvement in redesigning an undergraduate module on HCI, where the methods of assessment used were no suitable for increasingly larger classes (up to 160 students). Redesign decisions needed to preserve the validity and reliability of the assessment whilst respecting the need for timely feedback. Adriana will specifically talk about the exam and coursework, and how learning activities in the module were aligned to the assessment, through the use of PeerWise for student-authored MCQs, and the use of video for assessment to foster creativity and application of knowledge. During the talk, there will be an opportunity for discussion on the challenges then encountered.

A (shorter) second part of the talk will present her experiences in supporting women in computing, starting with a very small-scale intervention with staff and students at her previous institution, and concluding with her engagement at the Early Career Women’s Network in St Andrews.

Event details

  • When: 23rd January 2018 14:00 - 15:00
  • Where: Cole 1.33a
  • Series: School Seminar Series
  • Format: Seminar

Pireh Pirzada: Sensors in Smart Homes for independent living of elderly people

Title: Sensors in Smart Homes for independent living of elderly people

Abstract: In the UK alone approximately about 3.64 million people aged 65 or above live on their own, and this number is rising. This increases concern of the safety and wellbeing of an ageing population, as growing old often results in reduced capabilities for individuals to perform activities of daily living (ADL), which will soon have a compounded effect on wider societal health care and the economy. Recent technological advances allow logging, monitoring and tracking behaviour can be put to the service of reducing this burden, allowing elderly people to remain in their own homes safely and independently. In this talk, I will describe my MSc dissertation work on a system designed for recording ADL, monitoring, classifying, predicting and alerting concerned people if anything out of regular pattern or life threatening happening occurs using unobtrusive sensors so that their quality of life is not impaired. This development has highlighted a number of areas for extension and improvement which can be further explored in the context of my doctoral research, which I will also outline within this talk.

This dissertation work was completed at the University of Southampton in September 2017 under the supervision of Neil White and Adriana Wilde.

Event details

  • When: 12th December 2017 14:00 - 15:00
  • Where: Cole 1.33b
  • Format: Seminar, Talk

Edgar Chavez (CICESE): The Metric Approach to Reverse Searching (School Seminar)

Abstract:
Searching for complex objects (e.g. images, faces, audio or video), is an everyday problem in computer science, motivated by many applications. Efficient algorithms are demanded for reverse searching, also known as query by content, in large repositories. Current industrial solutions are ad hoc, domain-dependant, hardware intensive and have limited scaling. However, those disparate domains can be modelled, for indexing and searching, as a metric space. This model has been championed to become a solution to generic proximity searching problems. In practice, however, the metric space approach has been limited by the amount of main memory available.

In this talk we will explore the main ideas behind this technology, present a successful example in audio indexing and retrieval. The application scales well for large amounts of audio because the representation is quite compact and the full audio streams are not needed for indexing and searching.

Speaker Bio:
Edgar Chavez received his Phd from the Center for Mathematical Research in Guanajuato, Mexico in 1999. He founded the information retrieval group at Universidad Michoacana where he worked until 2012. After a brief period in the Institute of Mathematics in UNAM, he joined the computer science department in CICESE in 2013, where he founded the data science group. His main research interest include access and retrieval of data and data representation, such as fingerprints and point clouds. In 2009 he obtained the Thompson-Reuters award for having the most cited paper in computer science in Mexico and Latin America. In 2008 he co-funded, with Gonzalo Navarro, the conference Similarity Search and Applications, which is an international reference in the area. He has published more than 100 scientific contributions, with about 3500 citations in google scholar.

Event details

  • When: 5th December 2017 14:00 - 15:00
  • Where: Cole 1.33a
  • Series: School Seminar Series
  • Format: Seminar

Daniel Sorin (Duke University): Designing Formally Verifiable Cache Coherence Protocol (School Seminar)

Abstract:
The cache coherence protocol is an important but notoriously complicated part of a multicore processor. Typical protocols are far too complicated to verify completely and thus industry relies on extensive testing in hopes of uncovering bugs. In this work, we propose a verification-aware approach to protocol design, in which we design scalable protocols such that they can be completely formally verified. Rather than innovate in verification techniques, we use existing verification techniques and innovate in the design of the protocols. We present two design methodologies that, if followed, facilitate verification of arbitrarily scaled protocols. We discuss the impact of the constraints that must be followed, and we highlight possible future directions in verification-aware microarchitecture.

Speaker Bio:
Daniel J. Sorin is the Addy Professor of Electrical and Computer Engineering at Duke University. His research interests are in computer architecture, with a focus on fault tolerance, verification, and memory system design. He is the author of “Fault Tolerant Computer Architecture” and a co-author of “A Primer on Memory Consistency and Cache Coherence.” He is the recipient of a SICSA Distinguished Visiting Fellowship, a National Science Foundation Career Award, and Duke’s Imhoff Distinguished Teaching Award. He received a PhD and MS in electrical and computer engineering from the University of Wisconsin, and he received a BSE in electrical engineering from Duke University.

Event details

  • When: 26th September 2017 14:00 - 15:00
  • Where: Cole 1.33a
  • Series: School Seminar Series
  • Format: Seminar

Felipe Meneguzzi (PUCRS): Plan Recognition in the Real World (School Seminar)

Abstract:
Plan and goal recognition is the task of inferring the plan and goal of an agent through the observation of its actions and its environment and has a number of applications on computer-human interaction, assistive technologies and surveillance.
Although such techniques using planning domain theories have developed a number of very accurate and effective techniques, they often rely on assumptions of full observability and noise-free observations.
These assumptions are not necessarily true in the real world, regardless of the technique used to translate sensor data into symbolic logic-based observations.
In this work, we develop plan recognition techniques, based on classical planning domain theories, that can cope with observations that are both incomplete and noisy and show how they can be applied to sensor data processed through deep learning techniques.
We evaluate such techniques on a kitchen video dataset, bridging the gap between symbolic goal recognition and real-world data.

Speaker Bio:
Dr. Felipe Meneguzzi is a researcher on multiagent systems, normative reasoning and automated planning. He is currently an associate professor at Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS). Prior to that appointment he was a Project Scientist at the Robotics Institute at Carnegie Mellon University in the US. Felipe got his PhD at King’s College London in the UK and an undergraduate and masters degree at PUCRS in Brazil. He received the 2016 Google Research Awards for Latin America, and was one of four runners up to 2013 Microsoft Research Awards. His current research interests include plan recognition, hybrid planning and norm reasoning.

Slides from the talk

Event details

  • When: 19th September 2017 14:00 - 15:00
  • Where: Cole 1.33a
  • Series: School Seminar Series
  • Format: Seminar

Mark Olleson (Bloomberg): Super-sized mobile apps: getting the foundations right (School Seminar)

Abstract:
An email client. An instant messenger. A real-time financial market data viewer and news reader. A portfolio viewer. A note taker, file manager, media viewer, flight planner, restaurant finder… All built into one secure mobile application. On 4 different mobile operating systems. Does this sound challenging?
Mark from Bloomberg’s Mobile team will discuss how conventional development tools and techniques scale poorly when faced with this challenge, and how Bloomberg tackles the problem.

Speaker Bio:
Mark Olleson is a software engineer working in Bloomberg’s Mobile Professional team. Mark start developing iOS apps around the time the original iPad launched, and since has worked on projects which share common characteristics: scale and complexity. Today he specialises in large-scale and cross-platform mobile-app technology.

Event details

  • When: 17th October 2017 14:00 - 15:00
  • Where: Cole 1.33a
  • Series: School Seminar Series
  • Format: Seminar

Siobhán Clarke (Trinity College Dublin): Exploring Autonomous Behaviour in Open, Complex Systems (School Seminar)

Abstract:
Modern, complex systems are likely to execute in open environments (e.g., applications running over the Internet of Things), where changes are frequent and have the potential to cause significant negative consequences for the application. A better understanding of the dynamics in the environment will enable applications to better automate planning for change and remain resilient in the face of loss of data sources through, for example, mobility or
battery loss. This talk explores our recent work on autonomous applications in such open, complex systems. The approaches include a brief look at early work on more static, multi-layer system and change modelling, through to multi-agent systems that learn and adapt to changes in the environment, and finally collaborative models for emergent behaviour detection, and for resource sharing. I discuss the work in the context of smart cities applications, such as transport, energy and emergency response.

Speaker Bio:
Siobhán Clarke is a Professor in the School of Computer Science and Statistics at Trinity College Dublin. She joined Trinity in 2000, having previously worked for over ten years as a software engineer for IBM. Her current research focus is on software engineering models for the provision of smart and dynamic software services to urban stakeholders, addressing challenges in the engineering of dynamic software in ad hoc, mobile environments. She has published over 170 papers including in journals such as IEEE/ACM Transactions (TAAS, TSC, TSE, TECS, TMC, TODAES) and conference proceedings including in ICSE, OOPSLA, AAMAS, ICSOC, SEAMS, SASO. She is a Science Foundation Ireland (SFI) Principal Investigator, exploring an Internet of Things middleware for adaptable, urban-scale
software services.

Prof. Clarke is the founding Director of Future Cities, the Trinity Centre for Smart and Sustainable Cities, with contributors from a range of disciplines, including Computer Science, Statistics, Engineering, Social Science, Geography, Law, Business and the Health Sciences. She is also Director for Enable, a national collaboration between industry and seven Higher Education Institutes funded by both SFI and the industry partners, which is
focused on connecting communities to smart urban environments through the Internet of Things. Enable links three SFI Research Centres: Connect, Insight and Lero, bringing together world-class research on future networks, data analytics and software engineering.

Prof. Clarke leads the School’s Distributed Systems Group, and was elected Fellow of Trinity College Dublin in 2006.

Event details

  • When: 29th November 2017 14:00 - 15:00
  • Where: Cole 1.33a
  • Series: School Seminar Series
  • Format: Seminar

Stephen McKenna (Dundee): Recognising Interactions with Objects and People (School Seminar)

CANCELLED!

This talk has been postponed, due to the ongoing strike.

Abstract:

This talk describes work in our research group using computer vision along with other sensor modalities to recognise (i) actions in which people manipulate objects, and (ii) social interactions and their participants.

Activities such as those involved in food preparation involve interactions between hands, tools and manipulated objects that affect them in visually complex ways making recognition of their constituent actions challenging. One approach is to represent properties of local visual features with respect to trajectories of tracked objects. We explore an example in which reference trajectories are provided by visually tracking embedded inertial sensors. Additionally, we propose a vision method using discriminative spatio-temporal superpixel groups, obtaining state-of-the-art results (compared with published results using deep neural networks) whilst employing a compact, interpretable representation.

Continuous analysis of social interactions from wearable sensor data streams has a range of potential applications in domains including healthcare and assistive technology. I will present our recent work on (i) detection of focused social interactions using visual and audio cues, and (ii) identification of interaction partners using face matching. By modifying the output activation function of a deep convolutional neural network during training, we obtain an improved representation for open-set face recognition.

Speaker Bio:

Prof. Stephen McKenna co-leads the Computer Vision and Image Processing (CVIP) group at the University of Dundee where he is Chair of Computer Vision and Computing’s Head of Research. His interests lie primarily in biomedical image analysis, computer vision, and applied machine learning.

Event details

  • When: 14:00 - 15:00
  • Where: Cole 1.33a
  • Series: School Seminar Series
  • Format: Seminar

Emma Hart (Edinburgh Napier): Lifelong Learning in Optimisation (School Seminar)

Abstract:

The previous two decades have seen significant advances in optimisation techniques that are able to quickly find optimal or near-optimal solutions to problem instances in many combinatorial optimisation domains. Despite many successful applications of both these approaches, some common weaknesses exist in that if the nature of the problems to be solved changes over time, then algorithms needs to be at best periodically re-tuned. In the worst case, new algorithms may need to be periodically redeveloped. Furthermore, many approaches are inefficient, starting from a clean slate every time a problem is solved, therefore failing to exploit previously learned knowledge.

In contrast, in the field of machine-learning, a number of recent proposals suggest that learning algorithms should exhibit life-long learning, retaining knowledge and using it to improve learning in the future. I propose that optimisation algorithms should follow the same approach – looking to nature, we observe that the natural immune system exhibits many properties of a life-long learning system that could be exploited computationally in an optimisation framework. I will give a brief overview of the immune system, focusing on highlighting its relevant computational properties and then show how it can be used to construct a lifelong learning optimisation system. The system exploits genetic programming to continually evolve new optimisation algorithms, which form a continually adapting ensemble of optimisers. The system is shown to adapt to new problems, exhibit memory, and produce efficient and effective solutions when tested in both the bin-packing and scheduling domains.

Speaker Bio:

Emma Hart is a Professor in Natural Computation at Edinburgh Napier University in Scotland, where she also directs the Centre for Algorithms, Visualisation and Evolving Systems. Prior to that, she received a degree in Chemistry from the University of Oxford and a PhD in Artificial Immune Systems for Optimisation and Learning from the University of Edinburgh.

Her research focuses on developing novel bio-inspired techniques for solving a range of real-world optimisation and classification problems, particularly through the application of hyper-heuristic approaches and genetic programming. Her recent research explores optimisation techniques which are capable of continuously improving through experience, as well as ensemble approaches to optimisation for solving large classes of problems.

She is Editor-in-Chief of the journal Evolutionary Computation (MIT Press), ) and an elected member of the ACM SIGEVO Executive Committee. She also edits SIGEVOlution, the magazine of SIGEVO. She was General Chair of PPSN 2016, and regularly acts as Track Chair at GECCO . She has recently given keynotes at EURO 2016, Poland, and IJCCI (Maderia, 2017) on Lifelong Optimisation.

Her work is funded by both national funding agencies (EPSRC) and the European, where has recently led projects in Fundamentals of Collective Adaptive System (FOCAS) and Self-Aware systems (AWARE). She has worked with a range of real-world clients including from the Forestry Industry, Logistics and Personnel Scheduling.

Event details

  • When: 14th November 2017 14:00 - 15:00
  • Where: Cole 1.33a
  • Series: School Seminar Series
  • Format: Seminar