SRG Seminar: Managing Shared Mutable Data in a Distributed Environment (Simone Conte)

Title: Managing Shared Mutable Data in a Distributed Environment

Abstract: Managing data is central to our digital lives. The average user owns multiple devices and uses a large variety of applications, services and tools. In an ideal world storage is infinite, data is easy to share and version, and available irrespective of where it is stored, and users can protect and exert control over the data arbitrarily.

In the real world, however, achieving such properties is very hard. File systems provide abstractions that do not satisfy all the needs of our daily lives anymore. Many applications now abstract data management to users but do so within their own silos. Cloud services provide each their own storage abstraction adding more fragmentation to the overall system.

The work presented in this talk is about engineering a system that usefully approximates to the ideal world. We present the Sea Of Stuff, a model where users can operate over distributed storage as if using their local storage, they can organise and version data in a distributed manner, and automatically exert policies about how to store content.

Event details

  • When: 23rd March 2017 13:00 - 14:00
  • Where: Cole 1.33b
  • Series: Systems Seminars Series
  • Format: Seminar

SRG Seminar: Cloud scheduling algorithms by Long Thai

“Thanks to cloud computing, accessing to a virtualised computing cluster has become not only easy but also feasible to organisations, especially small and medium-sized ones. First of all, it does not require an upfront investment in building data centres and a constant expense for managing them. Instead, users can pay only for the amount of resources that they actually use. Secondly, cloud providers offer a resource provisioning mechanism which allows users to add or remove resources from their cluster easily and quickly in order to accommodate the workload which changes dynamically in real-time. The flexibility of users’ computing clusters are further increased as they are able to select one or a combination of different virtual machine types, each of which has different hardware specification.

Nevertheless, the users of cloud computing have to face the challenges that they have never encountered before. The monetary cost changes dynamically based on the amount of resources used by the clients. Which means it is no longer cost-effective to adopt a greedy approaches which acquires as much resource as possible. Instead, it requires a careful consideration before making any decision regarding acquiring resources. Moreover, the users of cloud computing have the face that paradox of choice resulted from the high number of options regarding hardware specification offered by cloud providers. As a result, finding a suitable machine type for an application can be difficult. It is even more challenging when a user owns many applications which of which performs different. Finally, addressing all the above challenges while ensuring that a user receives a desired performance further increase the difficulty of effectively using cloud computing resources.

In this research, we investigate and propose the approach that aims to solve the challenge of optimising the usage of cloud computing resource by constructing the heterogeneous cloud cluster which dynamically changes based on the workload. Our proposed approach consists two processes. The first one, named execution scheduling, aims to determine the amount of virtual machines and the allocate of workload on each machine in order to achieve the desired performance with the minimum cost. The second process, named execution management, monitors the execution during runtime, detects and handles unexpected events. The proposed research has been thoroughly evaluated by both simulated and real world experiments. The results have showed that our approach is able to not only achieve the desired performance while minimising the monetary cost but also reduce, or even completely prevent, negative results caused by unexpected events at runtime.”

Event details

  • When: 9th March 2017 13:00 - 14:00
  • Where: Cole 1.33b
  • Series: Systems Seminars Series
  • Format: Seminar

Implementing Event-Driven Microservices Architecture using Functional programming

*PLEASE NOTE THIS TALK WILL TAKE PLACE IN BMS BUILDING – SEMINAR ROOM 113*

BIO: Nikhil Barthwal is a polyglot programmer currently working as a Senior Software Engineer at Jet.com, an e-commerce startup recently acquired by Walmart. He works in the Tools & Productivity team with the aim of making developers more productive, as well as improving the quality of the code. Outside of work, he is involved with local meetups in New York city where he gives talks on various topics related to technology. He holds a Master’s in Computer Science with special focus on Distributed Systems and a Bachelor’s in Electrical Engineering.

ABSTRACT: Web services are typically stateless entities, that need to operate at scale at large. Functional paradigm can be used to model these web services work and offer several benefits like scalability, productivity, and correctness.

This talk describes how Jet.com implemented their Event-Driven Microservices using F#. It covers topics like their Microservices, Event-Sourcing, Kafka, Build & Deployment pipeline. The objective of the talk is show how to create a scalable & highly distributed web service in F#, and demonstrate how various characteristics of functional paradigm capture the behavior of such services architecture very naturally.

Event details

  • When: 8th March 2017 15:00 - 16:00
  • Where: TBA
  • Series: CS Colloquia Series
  • Format: Colloquium, Seminar

Seminar: The technology driving the evolution of internet advertising, targeted advertising or intrusive surveillance?

“The technology driving the evolution of internet advertising, targeted advertising or intrusive surveillance?”

 Tim Palmer, Senior Partner, Digiterre (http://www.digiterre.com)

 

Event details

  • When: 27th February 2017 14:00 - 15:00
  • Where: Cole 1.33a
  • Series: CS Colloquia Series
  • Format: Seminar

Distinguished Lecture Series 2016: Prof. Julie McCann

Earlier this month Professor Julie McCann from Imperial College London, delivered the next set of distinguished lectures for 2016, in Lower and Upper College Hall. The three topical, well attended and interesting lectures centred around Distributed Systems and Sensing and discussed how sensor networks are being used today, how other sciences will impact the research area, how such systems are programmed and finished by introducing ongoing challenges in terms of scalability, resilience and security.

Professor McCann is pictured below at various stages of the distinguished lecture series, and with Director of Research, Professor Simon Dobson and Dean of Science, Professor Alan Dearle.

dls1

dls2

Videos from the DLS can be accessed on Vimeo –
Lecture 1: https://vimeo.com/192134381
Lecture 2: https://vimeo.com/192135351
Lecture 3: https://vimeo.com/192137007

Images courtesy of Saleem Bhatti

DLS: Distributed Systems and Sensing by Prof. Julie McCann

DISTINGUISHED LECTURE SERIES

Semester 1

TITLE:

Distributed Systems and Sensing

by

Julie McCann

jm

7th November 2016

Lower and Upper College Halls

 

Introduction

By Professor Simon Dobson

School of Computer Science

University of St Andrews

The first of this academic year’s distinguished lectures will be given by Professor Julie McCann, Imperial College, London on Monday 7th November 2016 at Lower and Upper College Halls.

 

Overview

Chirping, self-organising, adaptive and intelligent tiny computers are beginning to enter both the market and people’s homes, performing various monitoring and control duties. From Google’s self-drive cars to the walls of modern office blocks, these simple devices are talking to each other in highly intelligent ways, mimicking the collective behaviour of insect colonies, for example, to overcome individual failures or changes in the local environment.

 

 

 Biography

Prof Julie A. McCann is a Professor of Computer Systems in Imperial College London (IC), where she leads the Adaptive Embedded Systems Engineering Research Group, she is Director for the Imperial wide Centre for Smart Connected Futures, Co-Director of the Intel Collaborative Research Institute for Sustainable Cities and she is CI for the NEC Smart Water Systems Lab and many other substantive projects with industry and academia with a focus on networking and sensing infrastructures to support environments such as smart cities, water and gas networks etc. She is CI on the EPSRC energy/water/food nexus WefWebs project where her focus is on precision farming and wine making.

Likewise, her NERC FUSE project designed and deployed a now patented sensing infrastructure for floodplain monitoring in Oxfordshire. Her research centres on highly decentralized and self-organizing scalable embedded frugal computing systems where one avoids a single point of failure to produce truly scalable solutions. She is a Fellow of the British Computer Society and is the Associate Editor for ACM Transactions on Adaptive Autonomic Systems (TAAS), has been General and Technical chair for the IEEE International Conference on Self-Adaptive and Self-Organising systems (SASO) and IEEE SECON 2016, SMARTCOMP 2017 and has been on the programme committee for IEEE INFOCOM, ACM UBICOMP and many more. Julie has presented her work in A* conferences and keynoted at the Indian Science Conclave Congregation of Nobel Prize Winners, for the encouragement of disadvantaged kids into science and computing in 2008.

 

 

 

Programme:   Monday 7th November 2016

 
     
 

09:15 – 09:30

 

Introduction:

 
  By Professor Simon Dobson  
 

09:30 – 10:30

 

Lecture 1:

 
  Professor Julie McCann will initially talk through how Wireless Sensor Networks are being used today and what other sciences will impact this subject leading to the ability to have Programmable Matter.  
 

10:30 – 11:00

 

Coffee Break

 
    Refreshments served
 

11:00 – 12:00

 

Lecture 2:

 
  In her second talk she will come very much down to earth and discuss how such systems are programmed today in terms of the hardware stack that composes them and the protocols that allow them to collaborate.  
 

12:00 – 14:00

 

Lunch Break

 
  Free time  
 

14:00 – 15:00

 

Lecture 3:

 
  Prof McCann will introduce some of the challenges that still remain, such as scaling this technology to larger dimensions but to also make them more resilient as well as secure etc. and the challenges that control adds to the system.  
 

15:00 – 15:30

 

 

Q & A Session:

 

 
  Open forum

 

 
   

 

 

Event details

  • When: 7th November 2016 09:15 - 16:00
  • Where: Lower College Hall
  • Series: Distinguished Lectures Series
  • Format: Distinguished lecture

Multi-modal Indoor Positioning: Trends and Challenges by Prof. Niki Trigoni, Oxford University

Abstract:

GPS has enabled a number of location based services outdoors, but the problem of localisation remains open in GPS-denied environments, such as indoors and underground. In this talk, I will discuss the key challenges to accurate and robust position estimation, and will describe a variety of sensor modalities and algorithms developed at Oxford to address this problem.

The talk will cover inertial, radio-based and vision-based localisation approaches and their advantages and disadvantages in different settings.

 

Short Bio:

Niki Trigoni is a Professor at the Oxford University Department of Computer Science and a fellow of Kellogg College. She obtained her PhD at the University of Cambridge (2001), became a postdoctoral researcher at Cornell University (2002-2004), and a Lecturer at Birkbeck College (2004-2007). Since she moved to Oxford in 2007, she established the Sensor Networks Group, and has conducted research in communication, localization and in-network processing algorithms for sensor networks. Her recent and ongoing projects span a wide variety of sensor networks applications, including indoor/underground localization, wildlife sensing, road traffic monitoring, autonomous (aerial and ground) vehicles, and sensor networks for industrial processes.

Event details

  • When: 8th November 2016 14:00 - 15:00
  • Where: Cole 1.33
  • Series: School Seminar Series
  • Format: Seminar, Talk

Quicker Sort by Dietmar Kühl, Bloomberg L.P.

 

Abstract:

Quicksort is a well-known sorting algorithm used to implement sort functionality in many libraries. The presentation isn’t really about the algorithm itself but rather about how to actually create an efficient implementation of the algorithm: a text-book implementation of the algorithm actually is not that quick (even if the pivot is chosen cleverly). It takes paying some attention to detail to improve the implementation significantly. This presentation starts with a simple implementation and makes incremental improvements to eventually yield a proper generic and fast sorting function. All code will be in C++ but it should be possible to follow the majority of the reasoning with knowledge of another programming language.

 

Short Bio:

Dietmar Kühl is a senior software developer at Bloomberg L.P. working on the data distribution environment used both internally and by enterprise installations at clients. Before joining Bloomberg he has done mainly consulting for software projects in the finance area. He is a regular attendee of the ANSI/ISO C++ standards committee, presents at conferences, and he used to be a moderator of the newsgroup comp.lang.c++.moderated. He frequently answers questions on Stackoverflow.

Event details

  • When: 25th October 2016 14:30 - 15:30
  • Where: Cole 1.33
  • Series: School Seminar Series
  • Format: Seminar, Talk

Running Before We have Evolved Legs: The Gap Between Theory and Practice in Evolutionary Algorithms by Prof. John McCall

Abstract:

Evolutionary algorithms (EA) has developed as an academic discipline since the 1960s. The subject has spawned major subfields such as swarm intelligence and genetic programming and is applied to a wide variety of practical real world problems in science medicine and engineering. EAs are often the only practical method of solving large combinatorial optimisation problems and have achieved best-known results on a variety of benchmark problems. The global academic EA community is highly active, supporting several large international conferences and high-quality international journals. Despite this activity, sustained over decades, the community has struggled to make significant progress on developing a satisfactory theory of EAs. At the same time, substantial progress has been made on developing more sophisticated EAs that are ever more powerful but ever less amenable to theoretical study. In this talk I will outline some of the main approaches to a theory of EAs and illustrate the gap between those EAs that can be theoretically analysed by those approaches and EAs that are being used in practice. I will conclude with some interesting current developments and key open questions.

 

Short Bio:

John McCall is a Professor of Computing Science at Robert Gordon University.  He works in the Computational Intelligence research group, which he founded in 2003. He has over twenty years research experience in naturally-inspired computing.  His research focuses on the study and analysis of a range of naturally-inspired optimization algorithms (genetic algorithms, particle swarm optimisation, ant colony optimisation, estimation of distribution algorithms etc.) and their application to difficult learning and optimisation problems, particularly real-world problems arising in complex engineering and medical / biological systems. Application areas of this research include medical decision support, data modeling of drilling operations, analysis of biological sequences, staff rostering and scheduling, industrial process optimization and bio-control. He has over 90 publications in books, journals and conferences. He has successfully supervised 13 PhD students and has examined over 15 PhD theses.

Event details

  • When: 11th October 2016 14:00 - 15:00
  • Where: Cole 1.33
  • Series: School Seminar Series
  • Format: Seminar

School Seminar: “The path to Cellular IoT and the promise of 5G” by Frankie Garcia

The School of Computer Science welcomes Frankie Garcia from Keysight Technologies, Edinburgh. Frankie Garcia

Abstract: Over the last two decades we have witnessed an unprecedented growth in the number of Internet-connected devices via the Cloud (storage, compute and intelligent analytics) generally referred to as the Internet of Things (IoT). This includes both machine-to-machine (M2M) and machine-to-person communications on a massive scale. While this growth has been fuelled through standardisation and engineering of short range wireless systems such as Bluetooth, Wi-Fi and Zigbee, cellular technologies promise wide area coverage, ease of deployment and low-cost/low-energy devices capable of operating for many years on a small battery. However, IoT technologies based on existing cellular systems are not optimized to support the huge number of simultaneous connections needed for widespread adoption. To achieve this, radical changes are required in protocol layer design, radio access techniques, and future integrated platforms that can scale and handle millions of devices efficiently. These devices will themselves exhibit a diverse set of requirements with respect to reliability, latency and availability. For these reasons, Cellular IoT has become one of the most important use case drivers in the evolution of future 5G technologies and architectures.

In this talk we will briefly introduce the audience to existing cellular standards and systems to support IoT communications, including their strengths and limitations. We will then cover the path towards more efficient cellular technologies being developed today under 3GPP, focusing heavily on Narrowband IoT (NB-IoT). This will be followed by a short introduction to 5G mobile network evolution needed to reduce signalling overheads and cater for a diversity of IoT use cases. This evolution is driven by tried and tested technologies used for virtualisation such as Software Defined Networking (SDN) and Network Function Virtualisation (NFV). “Slicing”, is a much discussed design principle that that includes logical access, compute, storage and networking for on demand architectures tailored to individual service requirements. Finally, we will present the development of an agile SDR platform targeting experimentation and prototyping of NBIoT systems.

Bio: Educated at Lancaster University, Frankie Garcia is currently Master Scientist with Keysight Technologies in Edinburgh. In addition he is project scientist with Agilent Technologies and over the last two years he has been working on adaptive radio technologies focusing on test and measurements tools and validation tools for the complex interactions that take place between the PHY and MAC layer of such adaptive radios. In particular his focus has been on Mobile WiMAX and presently on LTE.

His experience, based on academic and industrial research labs settings is quite broad raging from distributed systems, protocol engineering, high speed communications, multimedia systems, wireless sensor networks, adaptive radio and QoS.

He is a Visiting Professor at Strathclyde University, Department of Electronic and Electrical Engineering.

Event details

  • When: 27th September 2016 14:00 - 15:00
  • Where: Cole 1.33a
  • Series: School Seminar Series
  • Format: Seminar