Rob Stewart (Heriot-Watt University): Reliable Parallel Computing using Model Checking

Abstract:

This talk will demonstrate how model checking based verification of compilers and runtime systems can increase the confidence of parallel execution of programming languages, using two case studies.

As HPC systems continue to increase in scale, their mean time between failure decreases meaning reliability has become a major concern. I will present HdpH-RS, a parallel HPC language. HdpH-RS has a formal semantics, and a fault tolerant work stealing scheduler that has been verified with the SPIN model checker. At embedded scale, program transformations on stateful dynamic code can introduce bugs, race conditions and deadlock. I will present a parallel refactoring tool for the CAL dataflow language. It is integrated with the TINA model checker that we use to identify parallelisable cyclo-static actors in dynamic dataflow programs.

The broader aim of this work is to integrate automated formal verification into parallelising compilers and parallel runtime systems for heterogeneous architectures.

Speaker bio: Dr Rob Stewart is an Assistant Professor at Heriot-Watt University. He’s interested in formalising, verifying and implementing dataflow, functional and domain specific programming languages for manycore architectures and programmable hardware.

Event details

  • When: 19th November 2019 14:00 - 15:00
  • Where: Cole 1.33b
  • Series: School Seminar Series
  • Format: Seminar

Bran Knowles (Lancaster University): Understanding older adults’ distrust of digital technology

Abstract: It is well known that older adults continue to lag behind younger adults in terms of their breadth of uptake of digital technologies, amount and quality of engagement in these tools and ability to critically engage with the online world. Can these differences be explained by older adults’ distrust of digital technologies? Is trust, therefore, a critical design consideration for appealing to older adults? In this talk I will argue that while distrust is not, in fact, determinative of non-use and therefore does not explain these differences in tech usage, it is nonetheless key for designers to understand older adult distrust in developing socially responsible technologies.

Speaker Bio: Bran is a lecturer in the Data Science Institute at Lancaster University. Her research explores the social impacts of computing, with a particular interest in trust, privacy, and ethics. Her recent work has explored these issues at both ends of the age spectrum, with projects such as IoT4Kids, looking at the privacy, security and ethical issues of enabling children to programme IoT devices; and Mobile Age, looking at developing mobile apps for older adults. Bran currently serves as a member of the ACM Europe Technology Policy Committee.

Event details

  • When: 12th November 2019 14:00 - 15:00
  • Where: Cole 1.33b
  • Series: School Seminar Series
  • Format: Seminar

Jan De Muijnck-Hughes (University of Glasgow): LightClick: A Linear Typed Orchestration Language for System-On-A-Chip Designs

Abstract:

Two important aspects in hardware design are the safe routing of signals between modules, and ensuring that ports are correctly connected. Well-known hardware description languages such as SystemVerilog, provide nominal checking over these aspects. Thus, leaving correctness checks over module orchestration to be performed post-design-time using static analyses, testing, and during synthesis.

Using a mixture of dependent and quantitative typing, we can lift external correctness checks over module connections directly into the type-system. With this approach we can detect more errors at design time, enhance the safety of our hardware designs, and thus increase design productivity.

In this talk I will introduce and discuss LightClick, an orchestration language for hardware design that exemplifies our approach. LightClick uses quantitative typing to ensure linear usage of ports, and dependent types to ensure that port compatibility is a decidable compile-time check. I will show how LightClick can be used to model simple hardware designs, how SystemVerilog stubs are generated from designs using staged interpretation.

Speaker Bio: Jan is a Research Associate at the University of Glasgow, who is interested in using state-of-the-art advances in programming language theory to build more trustworthy systems. Jan is currently involved in the Border Patrol project – a collaboration between the Universities of Heriot-Watt, Glasgow, and Imperial College London to explore how Dependent Typing and Session Typing can help make hardware design safer and secure.

Event details

  • When: 5th November 2019 14:00 - 15:00
  • Where: Cole 1.33b
  • Series: School Seminar Series
  • Format: Seminar

Talk by Roberto Castañeda Lozano: Constraint-Based Register Allocation and Instruction Scheduling

Roberto has been part of a very cool project in KTH where they used Constraint Programming to solve a number of compiler problems. He is now working for Edinburgh and we invited him to give us a talk about his research in this area. The talk will be 30 minutes + Q&A. Please come along if you are interested.

Date/time: Oct 30th, 11am

Location: JC 1.33b

Title: Constraint-Based Register Allocation and Instruction Scheduling

Presenter: Roberto Castañeda Lozano – School of Informatics, University of Edinburgh

(joint work with Mats Carlsson, Frej Drejhammar, Gabriel Hjort Blindell, and Christian Schulte at RISE SICS and KTH Royal Institute of Technology in Stockholm, Sweden)

Abstract: This talk presents a constraint-based approach to register allocation and instruction scheduling, two central compiler problems. Unlike conventional heuristic algorithms, constraint programming has the potential to solve these problems optimally and to exploit processor-specific features readily. Our approach is the first to leverage this potential in practice by capturing the complete set of register allocation and instruction scheduling subproblems handled by state-of-the-art compilers, scaling to medium-sized problems, and generating executable code. The approach can be used to trade compilation time for code quality beyond the usual compiler optimization levels, explore and exploit processor-specific features, and identify improvement opportunities in conventional compilers.
More information can be found in Roberto’s doctoral dissertation (https://robcasloz.github.io/publications/TRITA-EECS-AVL-2018-48.pdf) and on the project’s website (http://unison-code.github.io).

Max L. Wilson (University of Nottingham): Brain-based HCI – What could brain data can tell us HCI

Please note non-standard date and time for this talk

Abstract:

This talk will describe a range of our projects, utilising functional Near Infrared Spectroscopy (fNIRS) in HCI. As a portable alternative that’s more tolerate of motion artefacts than EEG, fNIRS measures the amount of oxygen in the brain, as e.g. mental workload creates demand. As opposed to BCI (trying to control systems with our brain), we focus on brain-based HCI, asking what brain data can tell us about our software, our work, our habits, and ourselves. In particular, we are driven by the idea that brain data can become personal data in the future.

Speaker Bio:

Dr Max L. Wilson is an Associate Professor in the Mixed Reality Lab in Computer Science at the University of Nottingham.  His research focus is on evaluating Mental Workload in HCI contexts – as real-world as possible – primarily using functional Near Infrared Spectroscopy (fNIRS).  As a highly tolerant form of brain sensor, fNIRS is suitable for use in HCI research into user interface design, work tasks, and everyday experiences.  This work emerged from his prior research into the design and evaluation of complex user interfaces for information interfaces. Across these two research areas, Max has over 120 publications, including a Honourable Mention CHI2019 paper on a Brain-Controlled Movie – The MOMENT.

Event details

  • When: 25th October 2019 14:00 - 15:00
  • Where: Cole 1.33b
  • Series: School Seminar Series
  • Format: Seminar

Computer Science hosts J.P. Morgan

Following on from a successful visit last year, J.P. Morgan returned to the School of Computer Science today, to promote tech careers, internships and other student opportunities.

Staff from the company and students are pictured viewing project challenges and solutions highlighted in their technology showcase whilst discussing future career openings and enjoying the complimentary pizza.

J.P. Morgan is a popular destination for St Andrews graduates demonstrated by Alumni (Sjoukje Ijlstra, Conner Somerville and Mathew Kaminski) who are part of the team representing the company at the successful event.Great to see them back in the School.

MSc student participates in CERN School of Computing and the ACM Europe Summer School

MSc student Saad Memon participated in the CERN School of Computing 2019 and the ACM Europe Summer School 2019 in HPC Architectures for AI and Dedicated Applications.

CERN School of Computing (CSC 2019) involved a series of lectures and practical exercises over a two-week period. The Summer School is open to postgraduate students and research workers at CERN or at external institutes. Participants are generally attracted by the advanced topics that are taught. A limited number of places are available and all applications go through a selection process. Further details can be found on their school website.

The ACM summer school is open to outstanding MSc students and senior undergraduate students, this year successful participants spent a week in Barcelona, attending formal lectures during the mornings and practical sessions in the afternoons. Prof. Silvio Micali, Turing Award laureate and MIT Professor, gave a Turing lecture on “ALGORAND. The distributed Ledger for the Borderless Economy”.

Group picture of ACM Particpants


Saad receiving certificate from Fabrizio Gagliardi, Barcelona Supercomputing Center, Spain

Saad completed his MSc in Dependable Software Systems here in the School.

DLS: Multimodal human-computer interaction: past, present and future

Speaker: Stephen Brewster (University of Glasgow)
Venue: The Byre Theatre

Timetable:

9:30: Lecture 1: The past: what is multimodal interaction?
10:30 Coffee break
11:15 Lecture 2: The present: does it work in practice?
12:15 Lunch (not provided)
14:15 The future: Where next for multimodal interaction?

Speaker Bio:

Professor Brewster is a Professor of Human-Computer Interaction in the Department of Computing Science at the University of Glasgow, UK. His main research interest is in Multimodal Human-Computer Interaction, sound and haptics and gestures. He has done a lot of research into Earcons, a particular form of non-speech sounds.

He did his degree in Computer Science at the University of Herfordshire in the UK. After a period in industry he did his PhD in the Human-Computer Interaction Group at the University of York in the UK with Dr Alistair Edwards. The title of his thesis was “Providing a structured method for integrating non-speech audio into human-computer interfaces”. That is where he developed my interests in Earcons and non-speech sound.

After finishing his PhD he worked as a research fellow for the European Union as part of the European Research Consortium for Informatics and Mathematics (ERCIM). From September, 1994 – March, 1995 he worked at VTT Information Technology in Helsinki, Finland. He then worked at SINTEF DELAB in Trondheim, Norway.

Event details

  • When: 8th October 2019 09:30 - 15:15
  • Where: Byre Theatre
  • Series: Distinguished Lectures Series
  • Format: Distinguished lecture

Daniel S. Katz (University of Illinois): Parsl: Pervasive Parallel Programming in Python

Please note non-standard date and time for this talk

Abstract: High-level programming languages such as Python are increasingly used to provide intuitive interfaces to libraries written in lower-level languages and for assembling applications from various components. This migration towards orchestration rather than implementation, coupled with the growing need for parallel computing (e.g., due to big data and the end of Moore’s law), necessitates rethinking how parallelism is expressed in programs.

Here, we present Parsl, a parallel scripting library that augments Python with simple, scalable, and flexible constructs for encoding parallelism. These constructs allow Parsl to construct a dynamic dependency graph of components from a Python program enhanced with a small number of decorators that define the components to be executed asynchronously and in parallel, and then execute it efficiently on one or many processors. Parsl is designed for scalability, with an extensible set of executors tailored to different use cases, such as low-latency, high-throughput, or extreme-scale execution. We show, via experiments on the Blue Waters supercomputer, that Parsl executors can allow Python scripts to execute components with as little as 5 ms of overhead, scale to more than 250000 workers across more than 8000 nodes, and process upward of 1200 tasks per second.

Other Parsl features simplify the construction and execution of composite programs by supporting elastic provisioning and scaling of infrastructure, fault-tolerant execution, and integrated wide-area data management. We show that these capabilities satisfy the needs of many-task, interactive, online, and machine learning applications in fields such as biology, cosmology, and materials science.

Slides: see here.

Speaker Bio: Daniel S. Katz is Assistant Director for Scientific Software and Applications at the National Center for Supercomputing Applications (NCSA), and Research Associate Professor in Computer Science; Electrical & Computer Engineering; and the School of Information Sciences at the University of Illinois Urbana-Champaign. For further details, please see his website here.

Event details

  • When: 18th October 2019 13:00 - 14:00
  • Where: Cole 1.33b
  • Series: School Seminar Series
  • Format: Seminar

Ankush Jhalani (Bloomberg): Building Near Real-Time News Search

Abstract:

This talk provides an insight into the challenges involved in providing near real-time news search to Bloomberg customers. It starts with a picture of what’s involved in building such a backend, then delves into what makes up a search engine. Finally we discuss the challenges of scaling up for low-latency and high-load, and how we tackle them.

Speaker Bio:

Ankush leads the News Search infrastructure team at the Bloomberg Engineering office in London. After completing his Masters in Computer Science, he joined Bloomberg at their New York office in 2009. Later working from Washington DC, he led a team to build a web application leveraging Lucene/Elasticsearch for businesses to discover government contracting opportunities. In London, his team focuses on search infrastructure and services allowing clients to search news events from all over the globe with near real-time access and sub-second latencies.

 

Event details

  • When: 15th October 2019 14:00 - 15:00
  • Where: Cole 1.33a
  • Series: School Seminar Series
  • Format: Seminar