SRG Seminar: Cloud scheduling algorithms by Long Thai

“Thanks to cloud computing, accessing to a virtualised computing cluster has become not only easy but also feasible to organisations, especially small and medium-sized ones. First of all, it does not require an upfront investment in building data centres and a constant expense for managing them. Instead, users can pay only for the amount of resources that they actually use. Secondly, cloud providers offer a resource provisioning mechanism which allows users to add or remove resources from their cluster easily and quickly in order to accommodate the workload which changes dynamically in real-time. The flexibility of users’ computing clusters are further increased as they are able to select one or a combination of different virtual machine types, each of which has different hardware specification.

Nevertheless, the users of cloud computing have to face the challenges that they have never encountered before. The monetary cost changes dynamically based on the amount of resources used by the clients. Which means it is no longer cost-effective to adopt a greedy approaches which acquires as much resource as possible. Instead, it requires a careful consideration before making any decision regarding acquiring resources. Moreover, the users of cloud computing have the face that paradox of choice resulted from the high number of options regarding hardware specification offered by cloud providers. As a result, finding a suitable machine type for an application can be difficult. It is even more challenging when a user owns many applications which of which performs different. Finally, addressing all the above challenges while ensuring that a user receives a desired performance further increase the difficulty of effectively using cloud computing resources.

In this research, we investigate and propose the approach that aims to solve the challenge of optimising the usage of cloud computing resource by constructing the heterogeneous cloud cluster which dynamically changes based on the workload. Our proposed approach consists two processes. The first one, named execution scheduling, aims to determine the amount of virtual machines and the allocate of workload on each machine in order to achieve the desired performance with the minimum cost. The second process, named execution management, monitors the execution during runtime, detects and handles unexpected events. The proposed research has been thoroughly evaluated by both simulated and real world experiments. The results have showed that our approach is able to not only achieve the desired performance while minimising the monetary cost but also reduce, or even completely prevent, negative results caused by unexpected events at runtime.”

Event details

  • When: 9th March 2017 13:00 - 14:00
  • Where: Cole 1.33b
  • Series: Systems Seminars Series
  • Format: Seminar

Wrist Worn Haptic Feedback Device

One of our PhD students Esma Mansouri Benssassi and her supervisor Dr Erica Ye defined a requirement for a wrist worn device to group a number of Haptic feedback elements for an experiment they wished to carry out. The on-board Haptic elements are two eccentric rotating mass micro motors and an linear resonant actuator. Initial circuit schematics and printed circuit board designs were created in an Open Source Electronics Design Automation Suite KiCAD EDA. The resulting printed circuit board (PCB) design was made on the CS CNC Router , this produces the PCB by engraving the copper clad fibreglass-epoxy board with a Vee cutter.

PCBBare Circular Engraved PCB

The case for the PCB was created in Autodesk Inventor and was 3D printed using the CS Makerbot 2X 3D printer.

Blank PCB and 3D Printed Case

Haptic Wristband and Haptic Transducers

The wrist worn Haptic feedback device will be connected via an umbilical cable to the main control Feather M0 embedded ARM and Haptic Driver breadboard. This is an ARM microcontroller and wifi module which can be programmed using the Arduino IDE. Code for the ARM processor will enable stored and custom waveforms to be played on the haptic devices on the wrist.

Haptic Feedback Breadboard Assembly

Research on containers for HPC environments featured in CACM and HPC Wire

Rethinking High performance computing Platforms: Challenges, Opportunities and Recommendations, co-authored by Adam Barker and a team (Ole Weidner, Malcolm Atkinson, Rosa Filgueira Vicente) in the School of Informatics, University of Edinburgh was recently featured in the Communications of the ACM and HPC Wire.

The paper focuses on container technology and argues that a number of “second generation” high-performance computing applications with heterogeneous, dynamic and data-intensive properties have an extended set of requirements, which are not met by the current production HPC platform models and policies. These applications (and users) require a new approach to supporting infrastructure, which draws on container-like technology and services. The paper then goes on to describe cHPC: an early prototype of an implementation based on Linux Containers (LXC).

Ali Khajeh-Hosseini, Co-founder of AbarCloud and former co-founder of ShopForCloud (acquired by RightScale as PlanForCloud) said of this research, “Containers have helped speed-up the development and deployment of applications in heterogeneous environments found in larger enterprises. It’s interesting to investigate their applications in similar types of environments in newer HPC applications.

Computational Models of Tuberculosis

On 10th February, Michael Pitcher gave a talk on his upcoming work for his PhD.

Michael is a first-year PhD student based in the School of Computer Science, whose research also involves close collaboration with the School of Medicine. Michael’s work involves investigation of the use of computational models to simulate the progression and treatment of tuberculosis within individuals.
Continue reading

Success in the Laidlaw Undergraduate Internship Programme in Research and Leadership

Congratulations to Patrick Schrempf and Billy Brown who have been successful in their applications for a Laidlaw Undergraduate Internship in Research and Leadership for 2017. You can read further details about Billy and Patrick below.

Billy Brown:

I’m a fourth year Computer Science student from Belgium with too much interest for the subject. I play and referee korfball for the university, and I am fascinated by Old English and Norse history and mythology. I plan on using the Laidlaw Internship programme to get into the field of Computer Science research.

Project summary:

The Essence Domain Inference project aims to improve automated decision making by optimising the understanding of the statements used to define a problem specification. As part of the compilation of the high level Essence specification language, this project would tighten the domains to which a specified problem applies, with a domain inference algorithm.

The work is very much in the context of the recently-announced EPSRC grant working on automated constraint modelling in an attempt to advance the state of the art in solving complex combinatorial search problems. The modelling pipeline is akin to a compiler in that we refine a specification in the Essence language Billy mentions down to a number of powerful solving formalisms. The work Billy plan is to improve the refinement process and therefore the performance of the solvers, leading to higher quality solutions more quickly.

Patrick Schrempf:
I am currently a third year Computer Science student from Vienna. After enjoying doing research with the St Andrews Computer Human Interaction (SACHI) group last year, I am looking forward to the Laidlaw Internship Programme. Apart from research and studying, I enjoy training and competing with the Triathlon Club and the Pool Society.
Continue reading

Automated Remote Pulse Oximetry Talk

At the group meeting on 13th January Dr David Harris-Birtill gave a talk about ongoing work creating an automated remote pulse oximeter.

Here’s an abstract about this work which was presented at a recent conference in India:

“A patient’s blood oxygen saturation and heart rate are crucial indicators for monitoring their wellbeing; standard practice is to use a finger clip pulse oximeter, creating practical constraints on when and how these measurements are taken. Using multispectral imaging cameras, oxygen saturation and heart rate can be measured remotely, and without contact sensors. However, these devices are both expensive and lack the ability to accurately locate the body within the image. This project addresses these problems, creating and testing a prototype for a reliable, low cost system using a widely available camera normally used to control a gaming device, providing both colour and co-registered infrared images. The camera images are then used for remote sensing of oxygen saturation and heart rate for up to six people simultaneously.
Continue reading

Infection Group Journal Club

Michael Pitcher will be presenting to the School of Medicine’s Infection Group next Thursday. The talk will be a Journal Club meeting, where he will be discussing the following article from the Lancet Infectious Diseases:

P. T. Elkington and J. S. Friedland, “Permutations of time and place in tuberculosis,” Lancet Infect. Dis., vol. 15, no. 11, pp. 1357–1360, 2015..

The Personal View piece discusses the need for a new interpretation of the life cycle of Tuberculosis with reference to both the timescales of infection and the localisation within the lung of varying stages of the infection.

The meeting is at 10:00am Thursday 26th January in Seminar Room 1, School of Medicine.

RadarCat presented at UIST2016

SACHI research project RadarCat (Radar Categorization for Input & Interaction), highlighted earlier this year in the University news, the Courier and Gizmodo and in a Google I/O ATAP 2016 session, will be presented at UIST2016 this week.

RadarCat is a small, versatile radar-based system for material and object classification which enables new forms of everyday proximate interaction with digital devices. SACHI’s contribution to Project Soli featured in a previous blog post SACHI contribute to Google’s Project Soli, in May. Read more about RadarCat for object recognition on the SACHI blog.

Google's Project Soli workshop in March 2016

Google’s Project Soli workshop in March 2016