“A Decentralised Multimodal Integration of Social Signals: A Bio-Inspired Approach” by Esma Benssassi and “Plug and Play Bench: Simplifying Big Data Benchmarking Using Containers” by Sheriffo Ceesay

Esma’s abstract

The ability to integrate information from different sensory modalities in a social context is crucial for achieving an understanding of social cues and gaining useful social interaction and experience. Recent research has focused on multi-modal integration of social signals from visual, auditory, haptic or physiological data. Different data fusion techniques have been designed and developed; however, the majority have not achieved significant accuracy improvement in recognising social cues compared to uni-modal social signal recognition. One of the possible limitations is that these existing approaches have no sufficient capacity to model various types of interactions between different modalities and have not been able to leverage the advantages of multi-modal signals by considering each of them as complementary to the others. We introduce ideas for creating a decentralised model for social signals integration inspired by computational models of multi-sensory integration in neuroscience and the perception of social signals in the human brain.

Sheriffo’s abstract

The recent boom of big data, coupled with the challenges of its processing and storage gave rise to the development of distributed data processing and storage paradigms like MapReduce, Spark, and NoSQL databases. With the advent of cloud computing, processing and storing such massive datasets on clusters of machines is now feasible with ease. However, there are limited tools and approaches, which users can rely on to gauge and comprehend the performance of their big data applications deployed locally on clusters, or in the cloud. Researchers have started exploring this area by providing benchmarking suites suitable for big data applications. However, many of these tools are fragmented, complex to deploy and manage, and do not provide transparency with respect to the monetary cost of benchmarking an application.

In this talk, I will present Plug And Play Bench PAPB (https://github.com/sneceesay77/papb): an infrastructure aware abstraction built to integrate and simplify the process of big data benchmarking. PAPB automates the tedious process of installing, configuring and executing common big data benchmark workloads by containerising the tools and settings based on the underlying cluster deployment framework. Our proof of concept implementation utilises HiBench as the benchmark suite, HDP as the cluster deployment framework and Azure as the cloud platform. The talk will further illustrate the inclusion of cost metrics based on the underlying Microsoft Azure cloud platform.

Event details

  • When: 26th October 2017 13:00 - 14:00
  • Where: Cole 1.33a
  • Series: Systems Seminars Series
  • Format: Seminar

Distinguished Lecture Series 2017: Professor Ursula Martin

On October 10th, we were delighted to welcome back Professor Ursula Martin from the University of Oxford, to deliver the semester one distinguished lecture series in the Byre Theatre. Earlier in her career Prof Martin was professor of Computer Science here, and in fact only the second female professor in the history of the University of St Andrews.

The lectures covered numerous aspects of the history of computing. A particular highlight was to hear about Ada Lovelace’s early work, on Ada Lovelace day. As a trained mathematician and computer scientist who has studied her papers in detail, Ursula has discovered new insights about Ada’s education and work with Charles Babbage. She also focussed on aspects of computing history that are often ignored, such as history of computing in countries other than the USA or UK. Another aspect was how, even today, the contribution of women in history is often ignored, which Ursula herself has been able to correct in some cases.

The well received lectures centred around what every computer scientist should know about computer history. Professor Martin is pictured at various stages throughout the lectures and with Head of School, Prof Simon Dobson, DLS Coordinator, Prof Ian Gent and Principal and Vice-Chancellor, Prof Sally Mapstone. Read more about Professor Martin and the individual lectures in what every computer scientist should know about computer history. Recordings of each lecture can be viewed at the end of this post.

Images courtesy of Ryo Yanagida.

Lecture 1- The Early History of Computing: Ada Lovelace, Charles Babbage and the early history of programming.

Lecture 2 – Case Study, Alan Turing, Grace Hopper, and the history of programming.

Lecture 3- What do historians of computing do, and why is it important for computer scientists today.

Computer Science hosts J.P. Morgan

Following on from a successful visit last year, J.P. Morgan returned to the School of Computer Science last week, to promote tech careers, internships and other student opportunities.

Staff from the company and CS students are pictured viewing project challenges and their solutions highlighted in their technology showcase whilst discussing future career openings and enjoying the complimentary pizza.

J.P. Morgan is a popular destination for our graduates demonstrated by four Alumni (Maria McParland, Nada Kartouch, Conner Somerville and Peter Cockroft) who were part of the team representing the company at the successful event.

School achieves Athena SWAN Bronze Award

Athena SWAN Bronze Award Logo

We are delighted to announced that the School of Computer Science has achieved an Athena SWAN Bronze Award, as recognition of our commitment to advancing gender equality.

Almost all teaching staff contributed to the application for the award, as well as many other staff in all categories, research students, masters students, and undergraduates. In congratulating staff, Simon Dobson as Head of School said:

It really does have all our fingerprints on it. The award reflects the fact that we’ve identified things that we wanted to change and have planned how to make them happen: from now on they’ll all just be “how things are” rather than part of an external process.

Gala Malbasic: Young Software Engineer of the Year 2017

Congratulations to Gala Malbasic who won Young Software Engineer of the Year 2017. The awards organised by ScotlandIS were presented at the ScotSoft Awards Dinner yesterday evening. The Young Software Engineer of the Year awards are awarded to the best undergraduate software projects from students studying computer science and software engineering in Scotland.

Gala’s project, Leap Up: The Keyboard Renaissance, set out to to make keyboard interaction faster and less complicated and involved creating a hardware prototype, using software to ensure optimal sensor performance and implemented a large gesture set for use within the system prototype. The final year project was supervised by Professor Aaron Quigley.

Judged against the level of innovation planning & organisation, technical difficulty, commercial and/or social relevance, quality of engineering quality of presentation and level of knowledge & previous research, Judges considered Gala’s project to be exceptional.

As overall winner, Gala received a cheque for £2500 from Sopra Steria, and a trophy from ScotlandIS.

Watch Gala describing her project on YouTube.

Read more about the awards at FutureScot: Women sweep the board at Scottish software engineering awards

Photos courtesy of Aaron Quigley.

SRG Seminar: “Adaptive Multisite Computation Offloading in Mobile Clouds” by Dawand Sulaiman and “Topological Ranking-Based Resource Scheduling for Multi-Accelerator Systems” by Teng Yu

Dawand’s abstract

The concept of using cloud hosted infrastructure as a means to overcome the resource-constraints of mobile devices is known as Mobile Cloud Computing (MCC), and allows applications to run partially on the device, and partially on a remote cloud instance, thereby overcoming any device-specific resource constraints. However, as smart phones and tablets gain more CPU power and longer battery life, the meaning of MCC gradually changes. Instead of being fully dependent on the cloud, a number of nearby devices can be used to coordinate and distribute content and resources in a decentralised manner; this is known as Mobile Ad hoc Cloud Computing. Mobile devices with less computational power and lower battery life can be leveraged by the nearby mobile devices to run resource-intensive applications. Therefore, more efficient and reliable methodologies need to be explored for resource hungry and real time applications such as face recognition, data-intensive, and augmented reality mobile applications.
We present a unified framework which allows each mobile device within the shared environment to intelligently offload its computation to other external platforms. For the individual mobile devices, it is important to make the offloading decision based on network conditions, load of other machines, and mobile device’s own constraints (e.g., mobility and battery). Moreover, to achieve a global optimal task completion time for tasks from all the mobile devices, it is necessary to devise a task scheduling solution that schedules offloaded tasks in real time. The offloading decision engine needs to adapt to the dynamic changes in both the host device and connected nearby and remote devices.

Teng’s abstract

Accelerators are becoming increasingly prevalent in distributed computation. FPGAs have been shown to be fast and power efficient for particular tasks, yet scheduling on multi-accelerator systems is challenging when workloads vary significantly in granularity in terms of task size and/or number of computational unit required.
We present a novel approach for dynamically scheduling tasks on networked multi-accelerator systems which maintains high performance, even in the presence of irregular jobs. Our topological ranking-based scheduling allows realistic irregular workloads to be processed while maintaining a significantly higher level of performance than existing schedulers.

Event details

  • When: 12th October 2017 13:00 - 14:00
  • Where: Cole 1.33b
  • Series: Systems Seminars Series
  • Format: Seminar

Semantics for probabilistic programming – Dr Chris Heunen

Statistical models in e.g. machine learning are traditionally expressed in some sort of flow charts. Writing sophisticated models succinctly is much easier in a fully fledged programming language. The programmer can then rely on generic inference algorithms instead of having to craft one for each model. Several such higher-order functional probabilistic programming languages exist, but their semantics, and hence correctness, are not clear. The problem is that the standard semantics of probability theory, given by measurable spaces, does not support function types. I will describe how to get around this.

Event details

  • When: 6th October 2017 12:00
  • Where: Cole 1.33b

Computer Science Ball 2017

Postgraduate students, led by Paul Dobra, organised the first ever CS Ball in August. The celebration coincided with finishing summer dissertations and the annual poster and demo session. The school sponsored Smurfalicious Blue Ball proved very popular and sold out of tickets earlier in August. The theme was blue and the location was The old Manor Hotel, in Lundin Links. The evening comprised of champagne, dinner and a Ceilidh till midnight. Students are pictured enjoying the 3 course dinner and fully embracing the spirit of a Cèilidh. We look forward to seeing them at December Graduation.

Images courtesy of Paul Dobra, Ula Rustamova, Nick Tikhonov, and Xu Zhu.
– Main Organisers: Paul Dobra & Shyam Reyal
– Promotion (online): Yin Noe, Nouchali Reyal
– Promotion (offline): Gillian Baird, Fiona George, Midhat Un Nisa
– Material Design: Yin Noe
– Photography: Ula Rustamova and Nick Tikhonov
– Decorations: Fiona George, Midhat Un Nisa, Anke Shi, Masha Nedjalkova, Sihan Li
– Electronics / Multimedia / Drone: Xu Zhu
– Music for Disco: Blair Fyfe

https://www.facebook.com/csball.standrews/

Gala Malbasic: Finalist in Scottish Software Engineer of the Year

Congratulations to St Andrews student Gala Malbasic, who has been selected as one of the finalists in the Young Software Engineer of the Year Award 2017.

The Young Software Engineer of the Year Awards are given for the best undergraduate software projects completed by students studying computer science and software engineering in Scotland.

Gala graduated in Computer Science from St Andrews earlier this year, her Major Software Project – Leap Up: The New Keyboard Renaissance, incorporated novel uses of the Leap Motion sensor and was supervised by Professor Aaron Quigley.

Previous finalists and prize winners have included,
Simone Ivan Conte, Sam Elliott,Thomas Grimes, Alistair Scott, Craig Paul, Angus MacDonald, Ben Catherall and Graeme Bell. The number of finalists is further testament to the quality of talented students graduating from the School of Computer Science at St Andrews.

The winners of this year’s award will be announced on 5th October 2017!